Suppr超能文献

淀粉分解:近期发现揭示了不同的途径和新机制。

Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms.

作者信息

Zeeman Samuel C, Delatte Thierry, Messerli Gaëlle, Umhang Martin, Stettler Michaela, Mettler Tabea, Streb Sebastian, Reinhold Heike, Kötting Oliver

机构信息

Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland.

出版信息

Funct Plant Biol. 2007 Jun;34(6):465-473. doi: 10.1071/FP06313.

Abstract

The aim of this article is to provide an overview of current models of starch breakdown in leaves. We summarise the results of our recent work focusing on Arabidopsis, relating them to other work in the field. Early biochemical studies of starch containing tissues identified numerous enzymes capable of participating in starch degradation. In the non-living endosperms of germinated cereal seeds, starch breakdown proceeds by the combined actions of α-amylase, limit dextrinase (debranching enzyme), β-amylase and α-glucosidase. The activities of these enzymes and the regulation of some of the respective genes on germination have been extensively studied. In living plant cells, additional enzymes are present, such as α-glucan phosphorylase and disproportionating enzyme, and the major pathway of starch breakdown appears to differ from that in the cereal endosperm in some important aspects. For example, reverse-genetic studies of Arabidopsis show that α-amylase and limit-dextrinase play minor roles and are dispensable for starch breakdown in leaves. Current data also casts doubt on the involvement of α-glucosidase. In contrast, several lines of evidence point towards a major role for β-amylase in leaves, which functions together with disproportionating enzyme and isoamylase (debranching enzyme) to produce maltose and glucose. Furthermore, the characterisation of Arabidopsis mutants with elevated leaf starch has contributed to the discovery of previously unknown proteins and metabolic steps in the pathway. In particular, it is now apparent that glucan phosphorylation is required for normal rates of starch mobilisation to occur, although a detailed understanding of this step is still lacking. We use this review to give a background to some of the classical genetic mutants that have contributed to our current knowledge.

摘要

本文旨在概述目前叶片中淀粉分解的模型。我们总结了近期以拟南芥为研究对象的工作成果,并将其与该领域的其他研究相关联。早期对含淀粉组织的生化研究鉴定出了许多能够参与淀粉降解的酶。在发芽谷物种子的无生命胚乳中,淀粉分解通过α-淀粉酶、极限糊精酶(脱支酶)、β-淀粉酶和α-葡萄糖苷酶的共同作用进行。这些酶的活性以及一些相关基因在发芽过程中的调控已得到广泛研究。在活的植物细胞中,还存在其他酶,如α-葡聚糖磷酸化酶和歧化酶,并且淀粉分解的主要途径在某些重要方面似乎与谷物胚乳中的不同。例如,对拟南芥的反向遗传学研究表明,α-淀粉酶和极限糊精酶在叶片淀粉分解中起次要作用且并非必需。目前的数据也对α-葡萄糖苷酶的参与提出了质疑。相比之下,几条证据指向β-淀粉酶在叶片中起主要作用,它与歧化酶和异淀粉酶(脱支酶)共同作用产生麦芽糖和葡萄糖。此外,对叶片淀粉含量升高的拟南芥突变体的表征有助于发现该途径中以前未知的蛋白质和代谢步骤。特别是,现在很明显,葡聚糖磷酸化是淀粉正常动员速率所必需的,尽管对这一步骤仍缺乏详细了解。我们利用这篇综述为一些有助于我们当前知识的经典遗传突变体提供背景信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验