Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18719-18728. doi: 10.1073/pnas.2010320117. Epub 2020 Jul 20.
CD4-based decoy approaches against HIV-1 are attractive options for long-term viral control, but initial designs, including soluble CD4 (sCD4) and CD4-Ig, were ineffective. To evaluate a therapeutic that more accurately mimics HIV-1 target cells compared with monomeric sCD4 and dimeric CD4-Ig, we generated virus-like nanoparticles that present clusters of membrane-associated CD4 (CD4-VLPs) to permit high-avidity binding of trimeric HIV-1 envelope spikes. In neutralization assays, CD4-VLPs were >12,000-fold more potent than sCD4 and CD4-Ig and >100-fold more potent than the broadly neutralizing antibody (bNAb) 3BNC117, with >12,000-fold improvements against strains poorly neutralized by 3BNC117. CD4-VLPs also neutralized patient-derived viral isolates that were resistant to 3BNC117 and other bNAbs. Intraperitoneal injections of CD4-CCR5-VLP produced only subneutralizing plasma concentrations in HIV-1-infected humanized mice but elicited CD4-binding site mutations that reduced viral fitness. All mutant viruses showed reduced sensitivity to sCD4 and CD4-Ig but remained sensitive to neutralization by CD4-VLPs in vitro. In vitro evolution studies demonstrated that CD4-VLPs effectively controlled HIV-1 replication at neutralizing concentrations, and viral escape was not observed. Moreover, CD4-VLPs potently neutralized viral swarms that were completely resistant to CD4-Ig, suggesting that escape pathways that confer resistance against conventional CD4-based inhibitors are ineffective against CD4-VLPs. These findings suggest that therapeutics that mimic HIV-1 target cells could prevent viral escape by exposing a universal vulnerability of HIV-1: the requirement to bind CD4 on a target cell. We propose that therapeutic and delivery strategies that ensure durable bioavailability need to be developed to translate this concept into a clinically feasible functional cure therapy.
基于 CD4 的 HIV-1 诱饵方法是实现长期病毒控制的有吸引力的选择,但最初的设计,包括可溶性 CD4(sCD4)和 CD4-Ig,都没有效果。为了评估一种与单体 sCD4 和二聚体 CD4-Ig 相比更能准确模拟 HIV-1 靶细胞的治疗方法,我们生成了呈现膜相关 CD4(CD4-VLPs)簇的病毒样纳米颗粒,以允许三聚体 HIV-1 包膜刺突高亲和力结合。在中和测定中,CD4-VLPs 比 sCD4 和 CD4-Ig 强 12,000 倍以上,比广泛中和抗体(bNAb)3BNC117 强 100 倍以上,对 3BNC117 中和效果差的株的改善超过 12,000 倍。CD4-VLPs 还中和了对 3BNC117 和其他 bNAb 具有抗性的患者源性病毒分离物。在感染 HIV-1 的人源化小鼠中,腹腔内注射 CD4-CCR5-VLP 仅产生亚中和的血浆浓度,但引发了降低病毒适应性的 CD4 结合位点突变。所有突变病毒对 sCD4 和 CD4-Ig 的敏感性降低,但在体外仍对 CD4-VLPs 的中和敏感。体外进化研究表明,CD4-VLPs 以中和浓度有效地控制 HIV-1 复制,并且没有观察到病毒逃逸。此外,CD4-VLPs 强烈中和完全抵抗 CD4-Ig 的病毒群,表明赋予对传统 CD4 基抑制剂的抗性的逃逸途径对 CD4-VLPs 无效。这些发现表明,模拟 HIV-1 靶细胞的治疗方法可以通过暴露 HIV-1 的普遍脆弱性来防止病毒逃逸:即需要结合靶细胞上的 CD4。我们提出,需要开发确保持久生物利用度的治疗和输送策略,将这一概念转化为临床可行的功能性治愈疗法。