Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0668.
Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18530-18539. doi: 10.1073/pnas.2008923117. Epub 2020 Jul 20.
Endoplasmic reticulum (ER) macroautophagy (hereafter called ER-phagy) uses autophagy receptors to selectively degrade ER domains in response to starvation or the accumulation of aggregation-prone proteins. Autophagy receptors package the ER into autophagosomes by binding to the ubiquitin-like yeast protein Atg8 (LC3 in mammals), which is needed for autophagosome formation. In budding yeast, cortical and cytoplasmic ER-phagy requires the autophagy receptor Atg40. While different ER autophagy receptors have been identified, little is known about other components of the ER-phagy machinery. In an effort to identify these components, we screened the genome-wide library of viable yeast deletion mutants for defects in the degradation of cortical ER following treatment with rapamycin, a drug that mimics starvation. Among the mutants we identified was Δ. While yeast has one gene that encodes the phospholipid transporter , humans have four vacuolar protein-sorting (VPS) protein 13 isoforms. Mutations in all four human isoforms have been linked to different neurological disorders, including Parkinson's disease. Our findings have shown that Vps13 acts after Atg40 engages the autophagy machinery. Vps13 resides at contact sites between the ER and several organelles, including late endosomes. In the absence of Vps13, the cortical ER marker Rtn1 accumulated at late endosomes, and a dramatic decrease in ER packaging into autophagosomes was observed. Together, these studies suggest a role for Vps13 in the sequestration of the ER into autophagosomes at late endosomes. These observations may have important implications for understanding Parkinson's and other neurological diseases.
内质网(ER)巨自噬(以下简称 ER 自噬)利用自噬受体选择性降解 ER 结构域,以响应饥饿或聚集倾向蛋白的积累。自噬受体通过与泛素样酵母蛋白 Atg8(哺乳动物中的 LC3)结合,将 ER 包装到自噬体中,这是自噬体形成所必需的。在出芽酵母中,皮质和细胞质 ER 自噬需要自噬受体 Atg40。虽然已经鉴定出不同的 ER 自噬受体,但对 ER 自噬机制的其他成分知之甚少。为了鉴定这些成分,我们筛选了可存活酵母缺失突变体的全基因组文库,以研究在用雷帕霉素(一种模拟饥饿的药物)处理后皮质 ER 的降解缺陷。我们鉴定的突变体之一是Δ。虽然酵母只有一个基因编码磷脂转运蛋白,但人类有四个液泡蛋白分选(VPS)蛋白 13 同工型。所有四种人类同工型的突变都与不同的神经疾病有关,包括帕金森病。我们的研究结果表明,Vps13 在 Atg40 与自噬机制结合后起作用。Vps13 位于 ER 与包括晚期内体在内的几种细胞器之间的接触部位。在没有 Vps13 的情况下,皮质 ER 标记物 Rtn1 在晚期内体中积累,并且观察到 ER 包装到自噬体中的急剧减少。总之,这些研究表明 Vps13 在将 ER 隔离到晚期内体中的自噬体中起作用。这些观察结果可能对理解帕金森病和其他神经疾病具有重要意义。