Suppr超能文献

估计流行病学过程中时变的繁殖数:COVID-19 大流行的新统计工具。

Estimation of time-varying reproduction numbers underlying epidemiological processes: A new statistical tool for the COVID-19 pandemic.

机构信息

Department of Statistics and Probability, Michigan State University, East Lansing, MI, United States of America.

Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States of America.

出版信息

PLoS One. 2020 Jul 21;15(7):e0236464. doi: 10.1371/journal.pone.0236464. eCollection 2020.

Abstract

The coronavirus pandemic has rapidly evolved into an unprecedented crisis. The susceptible-infectious-removed (SIR) model and its variants have been used for modeling the pandemic. However, time-independent parameters in the classical models may not capture the dynamic transmission and removal processes, governed by virus containment strategies taken at various phases of the epidemic. Moreover, few models account for possible inaccuracies of the reported cases. We propose a Poisson model with time-dependent transmission and removal rates to account for possible random errors in reporting and estimate a time-dependent disease reproduction number, which may reflect the effectiveness of virus control strategies. We apply our method to study the pandemic in several severely impacted countries, and analyze and forecast the evolving spread of the coronavirus. We have developed an interactive web application to facilitate readers' use of our method.

摘要

冠状病毒大流行迅速演变成一场前所未有的危机。易感-感染-清除(SIR)模型及其变体已被用于对大流行进行建模。然而,经典模型中的时间独立参数可能无法捕获由病毒遏制策略在流行的不同阶段所决定的动态传播和清除过程。此外,很少有模型考虑到报告病例的可能不准确之处。我们提出了一个具有时变传播和清除率的泊松模型,以考虑报告中可能存在的随机误差,并估计一个时变的疾病繁殖数,这可能反映了病毒控制策略的有效性。我们应用我们的方法来研究几个受影响严重的国家的大流行,并分析和预测冠状病毒的传播情况。我们开发了一个交互式网络应用程序,方便读者使用我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131e/7373269/f9fa1d75f41d/pone.0236464.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验