Suppr超能文献

一种用于冷冻电镜中颗粒挑选的自监督工作流程。

A self-supervised workflow for particle picking in cryo-EM.

作者信息

McSweeney Donal M, McSweeney Sean M, Liu Qun

机构信息

Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.

Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA.

出版信息

IUCrJ. 2020 Jun 23;7(Pt 4):719-727. doi: 10.1107/S2052252520007241. eCollection 2020 Jul 1.

Abstract

High-resolution single-particle cryo-EM data analysis relies on accurate particle picking. To facilitate the particle picking process, a self-supervised workflow has been developed. This includes an iterative strategy, which uses a 2D class average to improve training particles, and a progressively improved convolutional neural network for particle picking. To automate the selection of particles, a threshold is defined (%/Res) using the ratio of percentage class distribution and resolution as a cutoff. This workflow has been tested using six publicly available data sets with different particle sizes and shapes, and can automatically pick particles with minimal user input. The picked particles support high-resolution reconstructions at 3.0 Å or better. This workflow is a step towards automated single-particle cryo-EM data analysis at the stage of particle picking. It may be used in conjunction with commonly used single-particle analysis packages such as , , , and .

摘要

高分辨率单颗粒冷冻电镜数据分析依赖于精确的颗粒挑选。为了促进颗粒挑选过程,已开发出一种自监督工作流程。这包括一种迭代策略,该策略使用二维类平均来改进训练颗粒,以及一个用于颗粒挑选的逐步改进的卷积神经网络。为了自动选择颗粒,使用类分布百分比与分辨率的比率作为截止值来定义一个阈值(%/Res)。此工作流程已使用六个具有不同颗粒大小和形状的公开可用数据集进行了测试,并且可以在用户输入最少的情况下自动挑选颗粒。挑选出的颗粒支持3.0 Å或更高分辨率的重建。此工作流程是朝着在颗粒挑选阶段实现自动化单颗粒冷冻电镜数据分析迈出的一步。它可以与常用的单颗粒分析软件包(如 、 、 、 和 )结合使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12b7/7340252/566912c8b905/m-07-00719-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验