Xu Hongyan, Karbalaei Akbari Mohammad, Verpoort Francis, Zhuiykov Serge
School of Materials Science & Engineering, North University of China, Taiyuan, 030051 Shanxi, PR China.
Centre for Environmental & Energy Research, Ghent University, Global Campus, 21985, Incheon, South Korea.
Nanoscale. 2020 Oct 15;12(39):20177-20188. doi: 10.1039/d0nr02184a.
Bio-inspired nano-electronic devices are key instruments for the development of advanced artificial intelligence systems, which will shape the future of humanoid nano-robotics. An emerging demand is realized for an accurate reception of environmental stimuli via visual perception, processing and realization of optical signals. The present study demonstrates the capability of functionalized all-oxide heterostructured two-dimensional (2D) plasmonic devices for the self-adaptive recognition of visual optical pulses. Specifically, the nano-engineering of the metal/semiconductor interface and co-modulation of heterostructured 2D semiconductor hetero-interfaces of Au/WO3 : TiO2 and Au/Ga2O3 : TiO2 facilitated the receptive and nociceptive detection of visible light pulses. A decrease in the dark current of the Au/WO3 : TiO2 unit resulted in the development of sensitive visible light photoreceptors. Furthermore, the modulation of charge transfers at the Au/Ga2O3 : TiO2 hetero-interfaces were the key parameter to determine the optical reception characteristics and nociceptive performance of all-oxide optoelectronic devices. Specifically, the rapid thermal annealing (RTA) of 2D Ga2O3 in N2 atmosphere ensured the modulation of charge transfer at Au/Ga2O3 : TiO2 hetero-interfaces in plasmonic devices. Thus, hetero-interface engineering enabled the effective control of charge transfer at 2D hetero-interfaces for an adaptive perception of visible optical pulses. Consequently, the fabricated sensitive Au/Ga2O3 (N2) : TiO2 bio-inspired unit emulated the optical functionalities of corneal nociceptors.
受生物启发的纳米电子器件是先进人工智能系统发展的关键工具,将塑造类人纳米机器人技术的未来。通过视觉感知、光信号处理和实现来准确接收环境刺激的需求日益凸显。本研究展示了功能化的全氧化物异质结构二维(2D)等离子体器件对视觉光脉冲的自适应识别能力。具体而言,金属/半导体界面的纳米工程以及Au/WO3 : TiO2和Au/Ga2O3 : TiO2异质结构二维半导体异质界面的共调制促进了可见光脉冲的感受性和伤害性检测。Au/WO3 : TiO2单元暗电流的降低导致了灵敏可见光光感受器的发展。此外,Au/Ga2O3 : TiO2异质界面处电荷转移的调制是决定全氧化物光电器件光接收特性和伤害性性能的关键参数。具体来说,二维Ga2O3在N2气氛中的快速热退火(RTA)确保了等离子体器件中Au/Ga2O3 : TiO2异质界面处电荷转移的调制。因此,异质界面工程能够有效控制二维异质界面处的电荷转移,以实现对可见光脉冲的自适应感知。结果,所制备的灵敏Au/Ga2O3(N2) : TiO2受生物启发单元模拟了角膜伤害感受器的光学功能。