Huang Chang-Hsun, Cheng Te-Yu, Wu Chia-Yi, Chen Kuan-Hung, Wu Tian-Li, Chou Yi-Chia
Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan.
Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
Adv Sci (Weinh). 2024 Sep;11(36):e2401946. doi: 10.1002/advs.202401946. Epub 2024 Aug 5.
Nociceptors are key sensory receptors that transmit warning signals to the central nervous system in response to painful stimuli. This fundamental process is emulated in an electronic device by developing a novel artificial nociceptor with an ultrathin, nonstoichiometric gallium oxide (GaO)-silicon oxide heterostructure. A large-area 2D-GaO film is printed on a substrate through liquid metal printing to facilitate the production of conductive filaments. This nociceptive structure exhibits a unique short-term temporal response following stimulation, enabling a facile demonstration of threshold-switching physics. The developed heterointerface 2D-GaO film enables the fabrication of fast-switching, low-energy, and compliance-free 2D-GaO nociceptors, as confirmed through experiments. The accumulation and extrusion of Ag in the oxide matrix are significant for inducing plastic changes in artificial biological sensors. High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that Ag clusters in the material dispersed under electrical bias and regrouped spontaneously when the bias is removed owing to interfacial energy minimization. Moreover, 2D nociceptors are stable; thus, heterointerface engineering can enable effective control of charge transfer in 2D heterostructural devices. Furthermore, the diffusive 2D-GaO device and its Ag dynamics enable the direct emulation of biological nociceptors, marking an advancement in the hardware implementation of artificial human sensory systems.
伤害感受器是关键的感觉受体,可响应疼痛刺激向中枢神经系统传递警告信号。通过开发一种具有超薄非化学计量氧化镓(GaO)-氧化硅异质结构的新型人工伤害感受器,在电子设备中模拟了这一基本过程。通过液态金属印刷在基板上印刷大面积二维GaO薄膜,以促进导电细丝的产生。这种伤害感受结构在受到刺激后表现出独特的短期时间响应,能够轻松展示阈值开关物理现象。通过实验证实,所开发的异质界面二维GaO薄膜能够制造快速开关、低能量且无需顺应性的二维GaO伤害感受器。Ag在氧化物基质中的积累和挤出对于诱导人工生物传感器的塑性变化具有重要意义。高分辨率透射电子显微镜和电子能量损失谱表明,材料中的Ag团簇在电偏压下分散,当偏压去除时,由于界面能最小化而自发重新聚集。此外,二维伤害感受器是稳定的;因此,异质界面工程能够有效控制二维异质结构器件中的电荷转移。此外,扩散性二维GaO器件及其Ag动力学能够直接模拟生物伤害感受器,标志着人工人类传感系统硬件实现方面的一项进展。