Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
Department of Medicine, Division of Nephrology, Washington University in St. Louis, St. Louis, MO, USA.
Dev Biol. 2020 Sep 15;465(2):130-143. doi: 10.1016/j.ydbio.2020.07.008. Epub 2020 Jul 19.
During cerebellar development, granule cell progenitors (GCPs) proliferate exponentially for a fixed period, promoted by paracrine mitogenic factor Sonic Hedgehog (Shh) secreted from Purkinje cells (PCs). Dysregulation of Shh signaling leads to uncontrolled GCP proliferation and medulloblastoma. Serendipitously our previous work discovered insulin-like growth factor 1 (IGF1) as another key driver for medulloblastoma, which led to the current investigation into the role of IGF1 in GCPs during normal development. While the IGF1R conditional knockout model revealed GCP defects in anterior cerebellum, the posterior cerebellum was mostly intact, likely owing to incomplete excision of floxed alleles. To circumvent this hurdle, we enlisted a mouse genetic system called Mosaic Analysis of Double Markers (MADM), which sporadically generates homozygous null cells unequivocally labeled with GFP and their wildtype sibling cells labeled with RFP, enabling phenotypic analysis at single-cell resolution. Using MADM, we found that loss of IGF1R resulted in a 10-fold reduction of GCs in both anterior and posterior cerebellum; and that hindered S phase entry and increased cell cycle exit collectively led to this phenotype. Genetic interaction studies showed that IGF1 signaling prevents GCP cell cycle exit at least partially through suppressing the level of p27kip1, a negative regulator of cell cycle. Finally, we found that IGF1 is produced by PCs in a temporally regulated fashion: it is highly expressed early in development when GCPs proliferate exponentially, then gradually decline as GCPs commit to cell cycle exit. Taken together, our studies reveal IGF1 as a paracrine factor that positively regulates GCP cell cycle in cooperation with Shh, through dampening the level of p27 to prevent precocious cell cycle exit. Our work not only showcases the power of phenotypic analysis by the MADM system but also provides an excellent example of multi-factorial regulation of robust developmental programs.
在小脑发育过程中,颗粒细胞前体细胞(GCP)在由浦肯野细胞(PC)分泌的旁分泌有丝分裂原因子 Sonic Hedgehog(Shh)的促进下呈指数级增殖一段时间。Shh 信号转导的失调会导致 GCP 增殖失控和髓母细胞瘤。我们之前的工作偶然发现胰岛素样生长因子 1(IGF1)是另一个髓母细胞瘤的关键驱动因素,这导致了目前对 IGF1 在正常发育过程中对 GCP 作用的研究。虽然 IGF1R 条件性敲除模型显示前小脑的 GCP 缺陷,但后小脑大部分完好无损,这可能是由于 floxed 等位基因的不完全缺失。为了克服这一障碍,我们采用了一种称为双标记马赛克分析(Mosaic Analysis of Double Markers,MADM)的小鼠遗传系统,该系统偶尔会产生明确标记为 GFP 的纯合缺失细胞及其野生型同胞细胞标记为 RFP,从而能够以单细胞分辨率进行表型分析。使用 MADM,我们发现 IGF1R 的缺失导致前、后小脑的 GCs 减少了 10 倍;并且阻碍 S 期进入和增加细胞周期退出共同导致了这种表型。遗传相互作用研究表明,IGF1 信号至少部分通过抑制细胞周期负调节剂 p27kip1 的水平来阻止 GCP 细胞周期退出。最后,我们发现 PC 以时间调节的方式产生 IGF1:它在 GCP 呈指数级增殖的早期发育阶段高度表达,然后随着 GCP 开始退出细胞周期逐渐下降。总之,我们的研究表明,IGF1 是一种旁分泌因子,通过降低 p27 的水平来防止过早的细胞周期退出,与 Shh 一起正向调节 GCP 细胞周期。我们的工作不仅展示了 MADM 系统进行表型分析的强大功能,而且为强有力的发育程序的多因素调节提供了一个极好的范例。