在理解小脑颗粒细胞发育和功能机制及其对行为的贡献方面的最新进展。
Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior.
作者信息
Lackey Elizabeth P, Heck Detlef H, Sillitoe Roy V
机构信息
Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
出版信息
F1000Res. 2018 Jul 26;7. doi: 10.12688/f1000research.15021.1. eCollection 2018.
The cerebellum is the focus of an emergent series of debates because its circuitry is now thought to encode an unexpected level of functional diversity. The flexibility that is built into the cerebellar circuit allows it to participate not only in motor behaviors involving coordination, learning, and balance but also in non-motor behaviors such as cognition, emotion, and spatial navigation. In accordance with the cerebellum's diverse functional roles, when these circuits are altered because of disease or injury, the behavioral outcomes range from neurological conditions such as ataxia, dystonia, and tremor to neuropsychiatric conditions, including autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. Two major questions arise: what types of cells mediate these normal and abnormal processes, and how might they accomplish these seemingly disparate functions? The tiny but numerous cerebellar granule cells may hold answers to these questions. Here, we discuss recent advances in understanding how the granule cell lineage arises in the embryo and how a stem cell niche that replenishes granule cells influences wiring when the postnatal cerebellum is injured. We discuss how precisely coordinated developmental programs, gene expression patterns, and epigenetic mechanisms determine the formation of synapses that integrate multi-modal inputs onto single granule cells. These data lead us to consider how granule cell synaptic heterogeneity promotes sensorimotor and non-sensorimotor signals in behaving animals. We discuss evidence that granule cells use ultrafast neurotransmission that can operate at kilohertz frequencies. Together, these data inspire an emerging view for how granule cells contribute to the shaping of complex animal behaviors.
小脑是一系列新出现的争论焦点,因为其神经回路现在被认为编码了意想不到的功能多样性水平。小脑回路所具备的灵活性使其不仅能参与涉及协调、学习和平衡的运动行为,还能参与诸如认知、情感和空间导航等非运动行为。与小脑多样的功能作用相一致,当这些神经回路因疾病或损伤而改变时,行为结果范围从共济失调、肌张力障碍和震颤等神经疾病到神经精神疾病,包括自闭症谱系障碍、精神分裂症和注意力缺陷多动障碍。出现了两个主要问题:哪些类型的细胞介导这些正常和异常过程,以及它们如何完成这些看似不同的功能?微小但数量众多的小脑颗粒细胞可能为这些问题提供答案。在这里,我们讨论了在理解颗粒细胞谱系如何在胚胎中产生以及在出生后小脑受损时补充颗粒细胞的干细胞生态位如何影响神经连接方面的最新进展。我们讨论了精确协调的发育程序、基因表达模式和表观遗传机制如何决定将多模式输入整合到单个颗粒细胞上的突触的形成。这些数据促使我们思考颗粒细胞突触异质性如何在行为动物中促进感觉运动和非感觉运动信号。我们讨论了颗粒细胞使用可在千赫兹频率下运作的超快神经传递的证据。总之,这些数据激发了一种关于颗粒细胞如何有助于塑造复杂动物行为的新观点。