Suppr超能文献

在石墨烯中对狄拉克流体的粘性流动进行成像。

Imaging viscous flow of the Dirac fluid in graphene.

机构信息

Department of Physics, Harvard University, Cambridge, MA, USA.

Quantum Technology Center, University of Maryland, College Park, MD, USA.

出版信息

Nature. 2020 Jul;583(7817):537-541. doi: 10.1038/s41586-020-2507-2. Epub 2020 Jul 22.

Abstract

The electron-hole plasma in charge-neutral graphene is predicted to realize a quantum critical system in which electrical transport features a universal hydrodynamic description, even at room temperature. This quantum critical 'Dirac fluid' is expected to have a shear viscosity close to a minimum bound, with an interparticle scattering rate saturating at the Planckian time, the shortest possible timescale for particles to relax. Although electrical transport measurements at finite carrier density are consistent with hydrodynamic electron flow in graphene, a clear demonstration of viscous flow at the charge-neutrality point remains elusive. Here we directly image viscous Dirac fluid flow in graphene at room temperature by measuring the associated stray magnetic field. Nanoscale magnetic imaging is performed using quantum spin magnetometers realized with nitrogen vacancy centres in diamond. Scanning single-spin and wide-field magnetometry reveal a parabolic Poiseuille profile for electron flow in a high-mobility graphene channel near the charge-neutrality point, establishing the viscous transport of the Dirac fluid. This measurement is in contrast to the conventional uniform flow profile imaged in a metallic conductor and also in a low-mobility graphene channel. Via combined imaging and transport measurements, we obtain viscosity and scattering rates, and observe that these quantities are comparable to the universal values expected at quantum criticality. This finding establishes a nearly ideal electron fluid in charge-neutral, high-mobility graphene at room temperature. Our results will enable the study of hydrodynamic transport in quantum critical fluids relevant to strongly correlated electrons in high-temperature superconductors. This work also highlights the capability of quantum spin magnetometers to probe correlated electronic phenomena at the nanoscale.

摘要

中性掺杂石墨烯中的电子-空穴等离子体预计将实现一种量子临界系统,在该系统中,即使在室温下,电输运也具有普遍的流体力学描述。这种量子临界“狄拉克流体”预计具有接近最小下限的剪切黏度,粒子间的散射率饱和于普朗克时间,这是粒子弛豫的最短可能时间尺度。尽管在有限载流子密度下的电输运测量与石墨烯中的流体力学电子流一致,但在中性掺杂点处粘性流的明确证明仍然难以捉摸。在这里,我们通过测量相关的杂散磁场,直接在室温下对石墨烯中的粘性狄拉克流体流动进行成像。纳米级磁成像使用氮空位中心在钻石中实现的量子自旋磁力计来完成。扫描单自旋和宽场磁力计揭示了在靠近中性掺杂点的高迁移率石墨烯沟道中电子流的抛物线泊肃叶分布,从而建立了狄拉克流体的粘性输运。与在金属导体中成像的传统均匀流动分布以及在低迁移率石墨烯沟道中成像的分布形成对比。通过结合成像和输运测量,我们获得了黏度和散射率,并观察到这些量与量子临界性预期的普遍值相当。这一发现确立了室温下中性掺杂、高迁移率石墨烯中几乎理想的电子流体。我们的结果将使研究与高温超导体中强关联电子相关的量子临界流体中的流体力学输运成为可能。这项工作还突出了量子自旋磁力计在纳米尺度上探测关联电子现象的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验