Suppr超能文献

自旋霍尔效应产生的反泊肃叶流。

Anti-Poiseuille flow by spin Hall effect.

作者信息

Fujimoto Junji, Koshibae Wataru, Maekawa Sadamichi

机构信息

Department of Electrical Engineering, Electronics, and Applied Physics, Saitama University, Saitama 338-8570, Japan.

RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.

出版信息

PNAS Nexus. 2024 Dec 5;3(12):pgae547. doi: 10.1093/pnasnexus/pgae547. eCollection 2024 Dec.

Abstract

Hydrodynamics is known to emerge in electron flow when the electron-electron interaction dominates over the other momentum-nonconserving scatterings. The hydrodynamic equation that describes the electric current includes viscosity, extending beyond the Ohmic flow. The laminar flow of such a viscous electron fluid in a sample with finite width is referred to as the Poiseuille flow, where the flow velocity is maximum at the center and decreases towards the edges of the sample. In this paper, we show a unique viscous electron fluid arising in electron systems exhibiting the spin Hall effect (spin Hall systems), where the charge and spin currents are coupled. Such a viscous electron fluid emerges even in noninteracting electron systems, and the current density exhibits a minimum at the center of a flow and a maximum at the edges, i.e. an anti-Poiseuille flow realizing. We also find that the spin accumulation by the spin Hall effect is connected to the electric current vorticity in two-dimensional (2D) spin Hall systems. Furthermore, we propose a novel guiding principle to manipulate topological magnetic textures from the hydrodynamic viewpoint. By solving the hydrodynamic equation in a 2D spin Hall system with a cavity and employing micromagnetic simulations for an attached chiral magnetic insulator, we demonstrate that spin accumulation near the cavity's boundary leads to creating a magnetic skyrmion. Our research illuminates new aspects of electron hydrodynamics and spintronics, contributing significant insights to the fields.

摘要

当电子 - 电子相互作用在其他动量非守恒散射中占主导地位时,已知流体动力学会在电子流中出现。描述电流的流体动力学方程包括粘性,超出了欧姆流的范畴。在具有有限宽度的样品中,这种粘性电子流体的层流被称为泊肃叶流,其中流速在中心处最大,并朝着样品边缘减小。在本文中,我们展示了在表现出自旋霍尔效应的电子系统(自旋霍尔系统)中出现的一种独特的粘性电子流体,其中电荷流和自旋流相互耦合。即使在非相互作用电子系统中也会出现这种粘性电子流体,并且电流密度在流的中心处最小,在边缘处最大,即实现了反泊肃叶流。我们还发现,二维(2D)自旋霍尔系统中自旋霍尔效应引起的自旋积累与电流涡度相关。此外,我们从流体动力学的角度提出了一种操纵拓扑磁纹理的新颖指导原则。通过求解具有腔的二维自旋霍尔系统中的流体动力学方程,并对附着的手性磁绝缘体进行微磁模拟,我们证明了腔边界附近的自旋积累会导致产生磁斯格明子。我们的研究揭示了电子流体动力学和自旋电子学的新方面,为这些领域提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/828c/11646127/724a32a473d5/pgae547f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验