Arnold Julian, Koner Debasish, Käser Silvan, Singh Narendra, Bemish Raymond J, Meuwly Markus
Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
Department of Mechanical Engineering, Stanford University Stanford, California 94305, United States.
J Phys Chem A. 2020 Sep 3;124(35):7177-7190. doi: 10.1021/acs.jpca.0c05173. Epub 2020 Aug 20.
Machine learning based models to predict product state distributions from a distribution of reactant conditions for atom-diatom collisions are presented and quantitatively tested. The models are based on function-, kernel-, and grid-based representations of the reactant and product state distributions. All three methods predict final state distributions from explicit quasi-classical trajectory simulations with > 0.998. Although a function-based approach is found to be more than two times better in computational performance, the grid-based approach is preferred in terms of prediction accuracy, practicability, and generality. For the function-based approach, the choice of parametrized functions is crucial and this aspect is explicitly probed for final vibrational state distributions. Applications of the grid-based approach to nonequilibrium, multitemperature initial state distributions are presented, a situation common to energy and state distributions in hypersonic flows. The role of such models in direct simulation Monte Carlo and computational fluid dynamics simulations is also discussed.
提出了基于机器学习的模型,用于根据原子 - 双原子碰撞反应物条件的分布来预测产物状态分布,并进行了定量测试。这些模型基于反应物和产物状态分布的函数、核和网格表示。所有这三种方法通过显式准经典轨迹模拟预测最终状态分布,准确率>0.998。虽然发现基于函数的方法在计算性能上比其他方法好两倍多,但基于网格的方法在预测准确性、实用性和通用性方面更受青睐。对于基于函数的方法,参数化函数的选择至关重要,并且针对最终振动状态分布明确探讨了这一方面。介绍了基于网格的方法在非平衡、多温度初始状态分布中的应用,这种情况在高超声速流动中的能量和状态分布中很常见。还讨论了此类模型在直接模拟蒙特卡罗和计算流体动力学模拟中的作用。