Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
J Phys Chem B. 2022 Mar 24;126(11):2155-2167. doi: 10.1021/acs.jpcb.2c00212. Epub 2022 Mar 14.
Atomistic simulations using accurate energy functions can provide molecular-level insight into functional motions of molecules in the gas and in the condensed phase. This Perspective delineates the present status of the field from the efforts of others and some of our own work and discusses open questions and future prospects. The combination of physics-based long-range representations using multipolar charge distributions and kernel representations for the bonded interactions is shown to provide realistic models for the exploration of the infrared spectroscopy of molecules in solution. For reactions, empirical models connecting dedicated energy functions for the reactant and product states allow statistically meaningful sampling of conformational space whereas machine-learned energy functions are superior in accuracy. The future combination of physics-based models with machine-learning techniques and integration into all-purpose molecular simulation software provides a unique opportunity to bring such dynamics simulations closer to reality.
使用精确能量函数的原子模拟可以提供对气体和凝聚相中的分子功能运动的分子水平的洞察力。本观点从他人的努力和我们自己的一些工作中描绘了该领域的现状,并讨论了悬而未决的问题和未来的前景。事实证明,使用多极电荷分布的基于物理的长程表示与键相互作用的核表示的结合为探索溶液中分子的红外光谱提供了现实的模型。对于反应,连接反应物和产物状态的专用能量函数的经验模型允许对构象空间进行具有统计学意义的采样,而机器学习的能量函数在准确性方面更胜一筹。基于物理的模型与机器学习技术的未来结合以及集成到通用分子模拟软件中,为使此类动力学模拟更接近现实提供了独特的机会。