Suppr超能文献

用于透明细胞肾细胞癌 ISUP/WHO 分级的预测模型:CT 放射组学与常规增强 CT 的比较。

Prediction models for clear cell renal cell carcinoma ISUP/WHO grade: comparison between CT radiomics and conventional contrast-enhanced CT.

机构信息

Department of Radiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.

Department of Pathology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.

出版信息

Br J Radiol. 2020 Oct 1;93(1114):20200131. doi: 10.1259/bjr.20200131. Epub 2020 Aug 12.

Abstract

OBJECTIVE

Comparing the prediction models for the ISUP/WHO grade of clear cell renal cell carcinoma (ccRCC) based on CT radiomics and conventional contrast-enhanced CT (CECT).

METHODS

The corticomedullary phase images of 119 cases of low-grade (I and II) and high-grade (III and IV) ccRCC based on 2016 ISUP/WHO pathological grading criteria were analyzed retrospectively. The patients were randomly divided into training and validation set by stratified sampling according to 7:3 ratio. Prediction models of ccRCC differentiation were constructed using CT radiomics and conventional CECT findings in the training setandwere validated using validation set. The discrimination, calibration, net reclassification index (NRI) and integrated discrimination improvement index (IDI) of the two prediction models were further compared. The decision curve was used to analyze the net benefit of patients under different probability thresholds of the two models.

RESULTS

In the training set, the C-statistics of radiomics prediction model was statistically higher than that of CECT ( < 0.05), with NRI of 9.52% and IDI of 21.6%, both with statistical significance ( < 0.01).In the validation set, the C-statistics of radiomics prediction model was also higher but did not show statistical significance ( = 0.07). The NRI and IDI was 14.29 and 33.7%, respectively, both statistically significant ( < 0.01). Validation set decision curve analysis showed the net benefit improvement of CT radiomics prediction model in the range of 3-81% over CECT.

CONCLUSION

The prediction model using CT radiomics in corticomedullary phase is more effective for ccRCC ISUP/WHO grade than conventional CECT.

ADVANCES IN KNOWLEDGE

As a non-invasive analysis method, radiomics can predict the ISUP/WHO grade of ccRCC more effectively than traditional enhanced CT.

摘要

目的

比较基于 CT 影像组学和常规增强 CT(CECT)的肾透明细胞癌(ccRCC)ISUP/WHO 分级预测模型。

方法

回顾性分析 119 例基于 2016 年 ISUP/WHO 病理分级标准的低级别(I 和 II 级)和高级别(III 和 IV 级)ccRCC 的皮质髓质期图像。患者按分层抽样法以 7:3 的比例随机分为训练集和验证集。在训练集中构建基于 CT 影像组学和常规 CECT 特征的 ccRCC 分化预测模型,并在验证集中验证。进一步比较两种预测模型的判别能力、校准能力、净重新分类指数(NRI)和综合判别改善指数(IDI)。使用两种模型在不同概率阈值下的患者净收益分析决策曲线。

结果

在训练集中,影像组学预测模型的 C 统计量明显高于 CECT( < 0.05),NRI 为 9.52%,IDI 为 21.6%,均有统计学意义( < 0.01)。在验证集中,影像组学预测模型的 C 统计量也较高,但无统计学意义( = 0.07)。NRI 和 IDI 分别为 14.29%和 33.7%,均有统计学意义( < 0.01)。验证集决策曲线分析表明,在 3%至 81%的范围内,CT 影像组学预测模型的净收益优于 CECT。

结论

皮质髓质期 CT 影像组学预测模型比常规 CECT 对 ccRCC ISUP/WHO 分级更有效。

知识进展

作为一种非侵入性分析方法,影像组学比传统增强 CT 能更有效地预测 ccRCC 的 ISUP/WHO 分级。

相似文献

5
Prediction of ISUP grading of clear cell renal cell carcinoma using support vector machine model based on CT images.
Medicine (Baltimore). 2019 Apr;98(14):e15022. doi: 10.1097/MD.0000000000015022.
7
Development and validation of a CT-based nomogram for preoperative prediction of clear cell renal cell carcinoma grades.
Eur Radiol. 2021 Aug;31(8):6078-6086. doi: 10.1007/s00330-020-07667-y. Epub 2021 Jan 29.

引用本文的文献

3
Predicting Renal Cell Carcinoma Subtypes and Fuhrman Grading Using Multiphasic CT-Based Texture Analysis and Machine Learning Techniques.
Indian J Radiol Imaging. 2024 Dec 11;35(2):306-315. doi: 10.1055/s-0044-1796639. eCollection 2025 Apr.
5
Development and validation of a CT based radiomics nomogram for preoperative prediction of ISUP/WHO grading in renal clear cell carcinoma.
Abdom Radiol (NY). 2025 Mar;50(3):1228-1239. doi: 10.1007/s00261-024-04576-2. Epub 2024 Sep 23.
6
Impact of multi-parameter images obtained from dual-energy CT on radiomics to predict pathological grading of bladder urothelial carcinoma.
Abdom Radiol (NY). 2024 Dec;49(12):4324-4333. doi: 10.1007/s00261-024-04516-0. Epub 2024 Aug 12.
7
Radiomics predict the WHO/ISUP nuclear grade and survival in clear cell renal cell carcinoma.
Insights Imaging. 2024 Jul 12;15(1):175. doi: 10.1186/s13244-024-01739-z.
8
Associations between contrast-enhanced ultrasound features and WHO/ISUP grade of clear cell renal cell carcinoma: a retrospective study.
Int Urol Nephrol. 2024 Mar;56(3):1157-1164. doi: 10.1007/s11255-023-03774-z. Epub 2023 Sep 5.
9
Radiomics vs radiologist in bladder and renal cancer. Results from a systematic review.
Cent European J Urol. 2023;76(1):12-19. doi: 10.5173/ceju.2023.252. Epub 2023 Jan 21.
10
Circ_000829 Plays an Anticancer Role in Renal Cell Carcinoma by Suppressing SRSF1-Mediated Alternative Splicing of SLC39A14.
Oxid Med Cell Longev. 2022 Aug 26;2022:8645830. doi: 10.1155/2022/8645830. eCollection 2022.

本文引用的文献

2
CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma.
Abdom Radiol (NY). 2019 Jul;44(7):2528-2534. doi: 10.1007/s00261-019-01992-7.
5
Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade.
Eur J Radiol. 2018 Dec;109:8-12. doi: 10.1016/j.ejrad.2018.10.005. Epub 2018 Oct 5.
6
WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: standards and controversies.
World J Urol. 2018 Dec;36(12):1913-1926. doi: 10.1007/s00345-018-2447-8. Epub 2018 Aug 19.
7
Delayed enhancement of the peritumoural cortex in clear cell renal cell carcinoma: correlation with Fuhrman grade.
Clin Radiol. 2018 Nov;73(11):982.e1-982.e7. doi: 10.1016/j.crad.2018.06.010. Epub 2018 Jul 25.
9
CT-based radiomic model predicts high grade of clear cell renal cell carcinoma.
Eur J Radiol. 2018 Jun;103:51-56. doi: 10.1016/j.ejrad.2018.04.013. Epub 2018 Apr 11.
10
Renal Lesion Characterization with Spectral CT: Determining the Optimal Energy for Virtual Monoenergetic Reconstruction.
Radiology. 2018 Jun;287(3):874-883. doi: 10.1148/radiol.2018171657. Epub 2018 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验