文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超声造影放射组学模型术前预测透明细胞肾细胞癌肿瘤分级的探索性研究。

Ultrasound contrast-enhanced radiomics model for preoperative prediction of the tumor grade of clear cell renal cell carcinoma: an exploratory study.

机构信息

Department of Ultrasound, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 18, Section 3, Renmin South Road, Wuhou District, Chengdu, Sichuan, 610041, China.

Department of Ultrasound, Nanchong Central Hospital (Nanchong Clinical Research Center), The Second Clinical Medical College, Nanchong Central Hospital, North Sichuan Medical College (University), Nanchong, Sichuan, 637000, China.

出版信息

BMC Med Imaging. 2024 Jun 6;24(1):135. doi: 10.1186/s12880-024-01317-1.


DOI:10.1186/s12880-024-01317-1
PMID:38844837
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11155131/
Abstract

BACKGROUND: This study aims to explore machine learning(ML) methods for non-invasive assessment of WHO/ISUP nuclear grading in clear cell renal cell carcinoma(ccRCC) using contrast-enhanced ultrasound(CEUS) radiomics. METHODS: This retrospective study included 122 patients diagnosed as ccRCC after surgical resection. They were divided into a training set (n = 86) and a testing set(n = 36). CEUS radiographic features were extracted from CEUS images, and XGBoost ML models (US, CP, and MP model) with independent features at different phases were established. Multivariate regression analysis was performed on the characteristics of different radiomics phases to determine the indicators used for developing the prediction model of the combined CEUS model and establishing the XGBoost model. The training set was used to train the above four kinds of radiomics models, which were then tested in the testing set. Radiologists evaluated tumor characteristics, established a CEUS reading model, and compared the diagnostic efficacy of CEUS reading model with independent characteristics and combined CEUS model prediction models. RESULTS: The combined CEUS radiomics model demonstrated the best performance in the training set, with an area under the curve (AUC) of 0.84, accuracy of 0.779, sensitivity of 0.717, specificity of 0.879, positive predictive value (PPV) of 0.905, and negative predictive value (NPV) of0.659. In the testing set, the AUC was 0.811, with an accuracy of 0.784, sensitivity of 0.783, specificity of 0.786, PPV of 0.857, and NPV of 0.688. CONCLUSIONS: The radiomics model based on CEUS exhibits high accuracy in non-invasive prediction of ccRCC. This model can be utilized for non-invasive detection of WHO/ISUP nuclear grading of ccRCC and can serve as an effective tool to assist clinical decision-making processes.

摘要

背景:本研究旨在探讨使用对比增强超声(CEUS)放射组学对透明细胞肾细胞癌(ccRCC)进行非侵入性评估的机器学习(ML)方法,以评估世界卫生组织/国际泌尿系统肿瘤学会(WHO/ISUP)核分级。

方法:这是一项回顾性研究,纳入了 122 名经手术切除后诊断为 ccRCC 的患者。他们被分为训练集(n=86)和测试集(n=36)。从 CEUS 图像中提取 CEUS 影像学特征,并建立具有不同相位独立特征的 XGBoost ML 模型(US、CP 和 MP 模型)。对不同放射组学相位的特征进行多变量回归分析,确定用于开发联合 CEUS 模型预测模型和建立 XGBoost 模型的指标。使用训练集对上述四种放射组学模型进行训练,然后在测试集中进行测试。放射科医生评估肿瘤特征,建立 CEUS 阅读模型,并比较 CEUS 阅读模型与独立特征和联合 CEUS 模型预测模型的诊断效能。

结果:联合 CEUS 放射组学模型在训练集表现最佳,曲线下面积(AUC)为 0.84,准确率为 0.779,敏感度为 0.717,特异度为 0.879,阳性预测值(PPV)为 0.905,阴性预测值(NPV)为 0.659。在测试集中,AUC 为 0.811,准确率为 0.784,敏感度为 0.783,特异度为 0.786,PPV 为 0.857,NPV 为 0.688。

结论:CEUS 放射组学模型在 ccRCC 的非侵入性预测中具有较高的准确性。该模型可用于非侵入性检测 ccRCC 的 WHO/ISUP 核分级,可作为辅助临床决策过程的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/f408ecbd0f44/12880_2024_1317_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/a5fda8dac72f/12880_2024_1317_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/c45ddb94a532/12880_2024_1317_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/8638b21c3bec/12880_2024_1317_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/ba03f7a0823e/12880_2024_1317_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/d6130f15eb28/12880_2024_1317_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/dc510c566434/12880_2024_1317_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/f408ecbd0f44/12880_2024_1317_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/a5fda8dac72f/12880_2024_1317_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/c45ddb94a532/12880_2024_1317_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/8638b21c3bec/12880_2024_1317_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/ba03f7a0823e/12880_2024_1317_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/d6130f15eb28/12880_2024_1317_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/dc510c566434/12880_2024_1317_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7e/11155131/f408ecbd0f44/12880_2024_1317_Fig7_HTML.jpg

相似文献

[1]
Ultrasound contrast-enhanced radiomics model for preoperative prediction of the tumor grade of clear cell renal cell carcinoma: an exploratory study.

BMC Med Imaging. 2024-6-6

[2]
Machine Learning-Enabled Fuhrman Grade in Clear-cell Renal Carcinoma Prediction Using Two-dimensional Ultrasound Images.

Ultrasound Med Biol. 2024-12

[3]
Prediction models for clear cell renal cell carcinoma ISUP/WHO grade: comparison between CT radiomics and conventional contrast-enhanced CT.

Br J Radiol. 2020-8-12

[4]
Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT.

Abdom Radiol (NY). 2019-6

[5]
Ultrasound-Based Radiomics for Predicting the WHO/ISUP Grading of Clear-Cell Renal Cell Carcinoma.

Ultrasound Med Biol. 2024-11

[6]
Multi-sequence MRI-based radiomics model to preoperatively predict the WHO/ISUP grade of clear Cell Renal Cell Carcinoma: a two-center study.

BMC Cancer. 2024-9-27

[7]
CT-based radiomics model using stability selection for predicting the World Health Organization/International Society of Urological Pathology grade of clear cell renal cell carcinoma.

Br J Radiol. 2024-5-29

[8]
Incremental value of automatically segmented perirenal adipose tissue for pathological grading of clear cell renal cell carcinoma: a multicenter cohort study.

Int J Surg. 2024-7-1

[9]
High-frame-rate contrast-enhanced ultrasound to differentiate between clear cell renal cell carcinoma and angiomyolipoma.

BMC Cancer. 2024-5-30

[10]
Multimodal data integration using machine learning to predict the risk of clear cell renal cancer metastasis: a retrospective multicentre study.

Abdom Radiol (NY). 2024-7

引用本文的文献

[1]
Artificial Intelligence-Augmented Advancements in the Diagnostic Challenges Within Renal Cell Carcinoma.

J Clin Med. 2025-3-26

[2]
Artificial intelligence-based multimodal prediction for nuclear grading status and prognosis of clear cell renal cell carcinoma: a multicenter cohort study.

Int J Surg. 2025-6-1

[3]
DASNet: A Convolutional Neural Network with SE Attention Mechanism for ccRCC Tumor Grading.

Interdiscip Sci. 2025-3-24

[4]
Multimodal deep learning with MUF-net for noninvasive WHO/ISUP grading of renal cell carcinoma using CEUS and B-mode ultrasound.

Front Physiol. 2025-3-7

本文引用的文献

[1]
Radiomics and Artificial Intelligence: Renal Cell Carcinoma.

Urol Clin North Am. 2024-2

[2]
Multiphase CT radiomics nomogram for preoperatively predicting the WHO/ISUP nuclear grade of small (< 4 cm) clear cell renal cell carcinoma.

BMC Cancer. 2023-10-9

[3]
The Use of Radiomic Tools in Renal Mass Characterization.

Diagnostics (Basel). 2023-8-24

[4]
Associations between contrast-enhanced ultrasound features and WHO/ISUP grade of clear cell renal cell carcinoma: a retrospective study.

Int Urol Nephrol. 2024-3

[5]
Pre-operative Prediction of Invasiveness in Renal Cell Carcinoma: The Role of Conventional Ultrasound and Contrast-Enhanced Ultrasound.

Ultrasound Med Biol. 2023-9

[6]
Noninvasive Evaluation of Lupus Nephritis Activity Using a Radiomics Machine Learning Model Based on Ultrasound.

J Inflamm Res. 2023-2-3

[7]
A novel clinical-radiomic nomogram for the crescent status in IgA nephropathy.

Front Endocrinol (Lausanne). 2023

[8]
Comparative diagnostic performance of contrast-enhanced ultrasound and dynamic contrast-enhanced magnetic resonance imaging for differentiating clear cell and non-clear cell renal cell carcinoma.

Eur Radiol. 2023-5

[9]
Diagnostic Value of Contrast-Enhanced Ultrasound Features for WHO/ISUP Grading in Renal Cell Carcinoma.

J Ultrasound Med. 2023-7

[10]
Oncologic Imaging and Radiomics: A Walkthrough Review of Methodological Challenges.

Cancers (Basel). 2022-10-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索