Suppr超能文献

基于空间约束的稀疏功能脑网络估计用于 MCI 识别。

Estimating sparse functional brain networks with spatial constraints for MCI identification.

机构信息

School of Mathematics, Liaocheng University, Liaocheng, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.

出版信息

PLoS One. 2020 Jul 24;15(7):e0235039. doi: 10.1371/journal.pone.0235039. eCollection 2020.

Abstract

Functional brain network (FBN), estimated with functional magnetic resonance imaging (fMRI), has become a potentially useful way of diagnosing neurological disorders in their early stages by comparing the connectivity patterns between different brain regions across subjects. However, this depends, to a great extent, on the quality of the estimated FBNs, indicating that FBN estimation is a key step for the subsequent task of disorder identification. In the past decades, researchers have developed many methods to estimate FBNs, including Pearson's correlation and (regularized) partial correlation, etc. Despite their widespread applications in current studies, most of the existing methods estimate FBNs only based on the dependency between the measured blood oxygen level dependent (BOLD) signals, which ignores spatial relationship of signals associated with different brain regions. Due to the space and material parsimony principle of our brain, we believe that the spatial distance between brain regions has an important influence on FBN topology. Therefore, in this paper, we assume that spatially neighboring brain regions tend to have stronger connections and/or share similar connections with others; based on this assumption, we propose two novel methods to estimate FBNs by incorporating the information of brain region distance into the estimation model. To validate the effectiveness of the proposed methods, we use the estimated FBNs to identify subjects with mild cognitive impairment (MCI) from normal controls (NCs). Experimental results show that the proposed methods are better than the baseline methods in the sense of MCI identification accuracy.

摘要

功能脑网络(FBN),通过功能磁共振成像(fMRI)来估计,通过比较不同大脑区域之间的连通模式,已经成为一种在早期诊断神经紊乱的潜在有用方法。然而,这在很大程度上取决于估计 FBN 的质量,这表明 FBN 估计是后续识别障碍任务的关键步骤。在过去的几十年中,研究人员已经开发了许多方法来估计 FBN,包括 Pearson 相关和(正则化)偏相关等。尽管它们在当前研究中得到了广泛应用,但大多数现有方法仅基于测量血氧水平依赖(BOLD)信号之间的依赖性来估计 FBN,这忽略了与不同大脑区域相关的信号的空间关系。由于我们大脑的空间和物质简约原则,我们认为大脑区域之间的空间距离对 FBN 拓扑结构有重要影响。因此,在本文中,我们假设空间相邻的大脑区域之间往往具有更强的连接和/或与其他区域共享相似的连接;基于此假设,我们提出了两种新方法,通过将脑区距离信息纳入估计模型来估计 FBN。为了验证所提出方法的有效性,我们使用估计的 FBN 来识别轻度认知障碍(MCI)患者和正常对照组(NC)。实验结果表明,在所提出的方法在 MCI 识别准确性方面优于基线方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98dd/7381102/8ff11b8c4cfb/pone.0235039.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验