Suppr超能文献

重塑用于功能性脑网络估计和自闭症谱系障碍识别的皮尔逊相关性。

Remodeling Pearson's Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification.

作者信息

Li Weikai, Wang Zhengxia, Zhang Limei, Qiao Lishan, Shen Dinggang

机构信息

College of Information Science and Engineering, Chongqing Jiaotong UniversityChongqing, China.

School of Mathematics, Liaocheng UniversityLiaocheng, China.

出版信息

Front Neuroinform. 2017 Aug 31;11:55. doi: 10.3389/fninf.2017.00055. eCollection 2017.

Abstract

Functional brain network (FBN) has been becoming an increasingly important way to model the statistical dependence among neural time courses of brain, and provides effective imaging biomarkers for diagnosis of some neurological or psychological disorders. Currently, Pearson's Correlation (PC) is the simplest and most widely-used method in constructing FBNs. Despite its advantages in statistical meaning and calculated performance, the PC tends to result in a FBN with dense connections. Therefore, in practice, the PC-based FBN needs to be sparsified by removing weak (potential noisy) connections. However, such a scheme depends on a hard-threshold without enough flexibility. Different from this traditional strategy, in this paper, we propose a new approach for estimating FBNs by remodeling PC as an optimization problem, which provides a way to incorporate biological/physical priors into the FBNs. In particular, we introduce an L-norm regularizer into the optimization model for obtaining a sparse solution. Compared with the hard-threshold scheme, the proposed framework gives an elegant mathematical formulation for sparsifying PC-based networks. More importantly, it provides a platform to encode other biological/physical priors into the PC-based FBNs. To further illustrate the flexibility of the proposed method, we extend the model to a weighted counterpart for learning both sparse and scale-free networks, and then conduct experiments to identify autism spectrum disorders (ASD) from normal controls (NC) based on the constructed FBNs. Consequently, we achieved an 81.52% classification accuracy which outperforms the baseline and state-of-the-art methods.

摘要

功能脑网络(FBN)已日益成为一种对大脑神经时间序列之间的统计依赖性进行建模的重要方式,并为某些神经或心理疾病的诊断提供有效的成像生物标志物。目前,皮尔逊相关系数(PC)是构建FBN时最简单且使用最广泛的方法。尽管其在统计意义和计算性能方面具有优势,但PC往往会导致一个具有密集连接的FBN。因此,在实际应用中,基于PC的FBN需要通过去除弱(潜在噪声)连接来进行稀疏化处理。然而,这种方案依赖于一个缺乏足够灵活性的硬阈值。与这种传统策略不同,在本文中,我们提出了一种通过将PC重塑为一个优化问题来估计FBN的新方法,该方法提供了一种将生物/物理先验知识纳入FBN的途径。具体而言,我们在优化模型中引入了一个L范数正则化器以获得稀疏解。与硬阈值方案相比,所提出的框架为基于PC的网络稀疏化提供了一个优雅的数学公式。更重要的是,它提供了一个将其他生物/物理先验知识编码到基于PC的FBN中的平台。为了进一步说明所提方法的灵活性,我们将该模型扩展为一个加权模型,用于学习稀疏和无标度网络,然后基于构建的FBN进行实验,以从正常对照(NC)中识别出自闭症谱系障碍(ASD)。结果,我们实现了81.52%的分类准确率,优于基线方法和当前的先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cb7/5583214/a77907dde1e0/fninf-11-00055-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验