Suppr超能文献

基于 SARS-CoV-2 病例的流行和趋势对意大利地区和省份进行分类的聚类方法。

A Clustering Approach to Classify Italian Regions and Provinces Based on Prevalence and Trend of SARS-CoV-2 Cases.

机构信息

Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123 Catania, Italy.

Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", 95123 Catania, Italy.

出版信息

Int J Environ Res Public Health. 2020 Jul 22;17(15):5286. doi: 10.3390/ijerph17155286.

Abstract

While several efforts have been made to control the epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Italy, differences between and within regions have made it difficult to plan the phase two management after the national lockdown. Here, we propose a simple and immediate clustering approach to categorize Italian regions working on the prevalence and trend of SARS-CoV-2 positive cases prior to the start of phase two on 4 May 2020. Applying both hierarchical and k-means clustering, we identified three regional groups: regions in cluster 1 exhibited higher prevalence and the highest trend of SARS-CoV-2 positive cases; those classified into cluster 2 constituted an intermediate group; those in cluster 3 were regions with a lower prevalence and the lowest trend of SARS-CoV-2 positive cases. At the provincial level, we used a similar approach but working on the prevalence and trend of the total SARS-CoV-2 cases. Notably, provinces in cluster 1 exhibited the highest prevalence and trend of SARS-CoV-2 cases. Provinces in clusters 2 and 3, instead, showed a median prevalence of approximately 11 cases per 10,000 residents. However, provinces in cluster 3 were those with the lowest trend of cases. K-means clustering yielded to an alternative cluster solution in terms of the prevalence and trend of SARS-CoV-2 cases. Our study described a simple and immediate approach to monitor the SARS-CoV-2 epidemic at the regional and provincial level. These findings, at present, offered a snapshot of the epidemic, which could be helpful to outline the hierarchy of needs at the subnational level. However, the integration of our approach with further indicators and characteristics could improve our findings, also allowing the application to different contexts and with additional aims.

摘要

尽管意大利已经采取了多项措施来控制严重急性呼吸综合征冠状病毒 2 型(SARS-CoV-2)的流行,但由于各地区之间和内部存在差异,因此难以在全国封锁后计划第二阶段的管理。在这里,我们提出了一种简单而直接的聚类方法,以在 2020 年 5 月 4 日开始第二阶段之前对意大利各地区的 SARS-CoV-2 阳性病例的流行和趋势进行分类。应用层次聚类和 K-均值聚类,我们确定了三个区域组:组 1 中的区域表现出更高的流行率和 SARS-CoV-2 阳性病例的最高趋势;分类为组 2 的区域构成了一个中间组;组 3 中的区域具有较低的流行率和 SARS-CoV-2 阳性病例的最低趋势。在省级层面,我们采用了类似的方法,但针对 SARS-CoV-2 总病例的流行率和趋势进行分类。值得注意的是,组 1 中的省份表现出最高的 SARS-CoV-2 病例流行率和趋势。而组 2 和组 3 中的省份则显示出约每 10000 名居民中有 11 例的中位数流行率。然而,组 3 中的省份则是病例趋势最低的省份。K-均值聚类在 SARS-CoV-2 病例的流行率和趋势方面产生了替代的聚类解决方案。我们的研究描述了一种简单而直接的方法,可用于监测地区和省级的 SARS-CoV-2 流行情况。这些发现目前提供了对疫情的快照,有助于在国家以下层面确定需求的优先级。然而,将我们的方法与进一步的指标和特征相结合,可以改善我们的发现,还可以将其应用于不同的情况和具有其他目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36b2/7432053/c63eb2a69dc9/ijerph-17-05286-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验