Suppr超能文献

基于渗透策略优化(ITO)算法的基因表达微阵列数据分类。

Classification of Microarray Gene Expression Data Using an Infiltration Tactics Optimization (ITO) Algorithm.

机构信息

Department of Computer Science, National University of Computer and Emerging Sciences (NUCES), Lahore 54000, Pakistan.

出版信息

Genes (Basel). 2020 Jul 18;11(7):819. doi: 10.3390/genes11070819.

Abstract

A number of different feature selection and classification techniques have been proposed in literature including parameter-free and parameter-based algorithms. The former are quick but may result in local maxima while the latter use dataset-specific parameter-tuning for higher accuracy. However, higher accuracy may not necessarily mean higher reliability of the model. Thus, generalized optimization is still a challenge open for further research. This paper presents a warzone inspired "infiltration tactics" based optimization algorithm (ITO)-not to be confused with the ITO algorithm based on the Itõ Process in the field of Stochastic calculus. The proposed ITO algorithm combines parameter-free and parameter-based classifiers to produce a high-accuracy-high-reliability (HAHR) binary classifier. The algorithm produces results in two phases: (i) Lightweight Infantry Group (LIG) converges quickly to find non-local maxima and produces comparable results (i.e., 70 to 88% accuracy) (ii) Followup Team (FT) uses advanced tuning to enhance the baseline performance (i.e., 75 to 99%). Every soldier of the ITO army is a base model with its own independently chosen Subset selection method, pre-processing, and validation methods and classifier. The successful soldiers are combined through heterogeneous ensembles for optimal results. The proposed approach addresses a data scarcity problem, is flexible to the choice of heterogeneous base classifiers, and is able to produce HAHR models comparable to the established MAQC-II results.

摘要

已经有许多不同的特征选择和分类技术在文献中被提出,包括无参数和基于参数的算法。前者速度快,但可能导致局部最大值,而后者则使用特定于数据集的参数调整来提高准确性。然而,更高的准确性并不一定意味着模型的更高可靠性。因此,广义优化仍然是一个有待进一步研究的挑战。本文提出了一种受战区启发的“渗透策略”基于优化算法(ITO)-不要与随机微积分领域中基于 Ito 过程的 ITO 算法混淆。所提出的 ITO 算法结合了无参数和基于参数的分类器,以产生高精度-高可靠性(HAHR)二进制分类器。该算法在两个阶段产生结果:(i)轻步兵小组(LIG)快速收敛以找到非局部最大值并产生可比的结果(即,70%到 88%的准确性)(ii)后续小组(FT)使用高级调整来增强基准性能(即,75%到 99%)。ITO 军队的每一个士兵都是一个基础模型,有自己独立选择的子集选择方法、预处理和验证方法和分类器。通过异构集成来组合成功的士兵,以获得最佳结果。所提出的方法解决了数据稀缺问题,对异构基础分类器的选择具有灵活性,并且能够生成与已建立的 MAQC-II 结果相当的 HAHR 模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec63/7397166/068d18072d9a/genes-11-00819-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验