Suppr超能文献

基于结构化深度学习模型的乳腺病理图像多分类。

Breast Cancer Multi-classification from Histopathological Images with Structured Deep Learning Model.

机构信息

College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

Institute of evidence based Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.

出版信息

Sci Rep. 2017 Jun 23;7(1):4172. doi: 10.1038/s41598-017-04075-z.

Abstract

Automated breast cancer multi-classification from histopathological images plays a key role in computer-aided breast cancer diagnosis or prognosis. Breast cancer multi-classification is to identify subordinate classes of breast cancer (Ductal carcinoma, Fibroadenoma, Lobular carcinoma, etc.). However, breast cancer multi-classification from histopathological images faces two main challenges from: (1) the great difficulties in breast cancer multi-classification methods contrasting with the classification of binary classes (benign and malignant), and (2) the subtle differences in multiple classes due to the broad variability of high-resolution image appearances, high coherency of cancerous cells, and extensive inhomogeneity of color distribution. Therefore, automated breast cancer multi-classification from histopathological images is of great clinical significance yet has never been explored. Existing works in literature only focus on the binary classification but do not support further breast cancer quantitative assessment. In this study, we propose a breast cancer multi-classification method using a newly proposed deep learning model. The structured deep learning model has achieved remarkable performance (average 93.2% accuracy) on a large-scale dataset, which demonstrates the strength of our method in providing an efficient tool for breast cancer multi-classification in clinical settings.

摘要

从组织病理学图像中进行乳腺癌多分类对于计算机辅助乳腺癌诊断或预后起着关键作用。乳腺癌多分类是指识别乳腺癌的下属类别(导管癌、纤维腺瘤、小叶癌等)。然而,从组织病理学图像进行乳腺癌多分类面临着两个主要挑战:(1)乳腺癌多分类方法与二分类(良性和恶性)相比存在很大困难,(2)由于高分辨率图像外观的广泛可变性、癌细胞的高度一致性以及颜色分布的广泛不均匀性,多个类别的细微差异。因此,从组织病理学图像中进行自动乳腺癌多分类具有重要的临床意义,但尚未得到探索。现有文献中的工作仅关注于二分类,而不支持进一步的乳腺癌定量评估。在这项研究中,我们提出了一种使用新提出的深度学习模型的乳腺癌多分类方法。该结构化深度学习模型在大规模数据集上取得了显著的性能(平均准确率为 93.2%),这证明了我们的方法在为临床环境中的乳腺癌多分类提供高效工具方面的强大之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d05/5482871/e724823e64c6/41598_2017_4075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验