Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Hermitage Research Facility, Warwick, QLD 4370, Australia.
Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility, Warwick, QLD 4370, Australia.
Genes (Basel). 2020 Jul 16;11(7):806. doi: 10.3390/genes11070806.
C photosynthesis has evolved in over 60 different plant taxa and is an excellent example of convergent evolution. Plants using the C photosynthetic pathway have an efficiency advantage, particularly in hot and dry environments. They account for 23% of global primary production and include some of our most productive cereals. While previous genetic studies comparing phylogenetically related C and C species have elucidated the genetic diversity underpinning the C photosynthetic pathway, no previous studies have described the genetic diversity of the genes involved in this pathway within a C crop species. Enhanced understanding of the allelic diversity and selection signatures of genes in this pathway may present opportunities to improve photosynthetic efficiency, and ultimately yield, by exploiting natural variation. Here, we present the first genetic diversity survey of 8 known C gene families in an important C crop, (L.) Moench, using sequence data of 48 genotypes covering wild and domesticated sorghum accessions. Average nucleotide diversity of C gene families varied more than 20-fold from the NADP-malate dehydrogenase (MDH) gene family (θπ = 0.2 × 10) to the pyruvate orthophosphate dikinase (PPDK) gene family (θπ = 5.21 × 10). Genetic diversity of C genes was reduced by 22.43% in cultivated sorghum compared to wild and weedy sorghum, indicating that the group of wild and weedy sorghum may constitute an untapped reservoir for alleles related to the C photosynthetic pathway. A SNP-level analysis identified purifying selection signals on C PPDK and carbonic anhydrase (CA) genes, and balancing selection signals on C PPDK-regulatory protein (RP) and phosphoenolpyruvate carboxylase (PEPC) genes. Allelic distribution of these C genes was consistent with selection signals detected. A better understanding of the genetic diversity of C4 pathway in sorghum paves the way for mining the natural allelic variation for the improvement of photosynthesis.
C4 光合作用已经在 60 多个不同的植物类群中进化,是趋同进化的一个极好例子。使用 C4 光合作用途径的植物具有效率优势,特别是在炎热和干燥的环境中。它们占全球初级生产力的 23%,包括一些生产力最高的谷类作物。虽然之前比较系统发育相关的 C3 和 C4 物种的遗传研究阐明了支持 C4 光合作用途径的遗传多样性,但之前没有研究描述过 C 作物物种中参与该途径的基因的遗传多样性。深入了解该途径中基因的等位基因多样性和选择特征,可能有机会通过利用自然变异来提高光合作用效率,并最终提高产量。在这里,我们使用涵盖野生和驯化高粱品种的 48 个基因型的序列数据,首次对重要 C 作物高粱中的 8 个已知 C 基因家族进行了遗传多样性调查。C 基因家族的平均核苷酸多样性从 NADP-苹果酸脱氢酶(MDH)基因家族(θπ=0.2×10)到丙酮酸 orthophosphate 二激酶(PPDK)基因家族(θπ=5.21×10)变化超过 20 倍。与野生和杂草高粱相比,栽培高粱中 C 基因的遗传多样性降低了 22.43%,表明野生和杂草高粱群体可能构成与 C4 光合作用途径相关等位基因的未开发库。SNP 水平分析在 C4 PPDK 和碳酸酐酶(CA)基因上识别到纯化选择信号,在 C4 PPDK-调节蛋白(RP)和磷酸烯醇丙酮酸羧化酶(PEPC)基因上识别到平衡选择信号。这些 C 基因的等位基因分布与检测到的选择信号一致。更好地了解高粱中 C4 途径的遗传多样性为挖掘自然等位基因变异以提高光合作用铺平了道路。