Suppr超能文献

利用细菌铁氮酶进行生物甲烷生产的途径。

A pathway for biological methane production using bacterial iron-only nitrogenase.

机构信息

Department of Microbiology, University of Washington, Seattle, WA, USA.

Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA.

出版信息

Nat Microbiol. 2018 Mar;3(3):281-286. doi: 10.1038/s41564-017-0091-5. Epub 2018 Jan 15.

Abstract

Methane (CH) is a potent greenhouse gas that is released from fossil fuels and is also produced by microbial activity, with at least one billion tonnes of CH being formed and consumed by microorganisms in a single year . Complex methanogenesis pathways used by archaea are the main route for bioconversion of carbon dioxide (CO) to CH in nature. Here, we report that wild-type iron-iron (Fe-only) nitrogenase from the bacterium Rhodopseudomonas palustris reduces CO simultaneously with nitrogen gas (N) and protons to yield CH, ammonia (NH) and hydrogen gas (H) in a single enzymatic step. The amount of CH produced by purified Fe-only nitrogenase was low compared to its other products, but CH production by this enzyme in R. palustris was sufficient to support the growth of an obligate CH-utilizing Methylomonas strain when the two microorganisms were grown in co-culture, with oxygen (O) added at intervals. Other nitrogen-fixing bacteria that we tested also formed CH when expressing Fe-only nitrogenase, suggesting that this is a general property of this enzyme. The genomes of 9% of diverse nitrogen-fixing microorganisms from a range of environments encode Fe-only nitrogenase. Our data suggest that active Fe-only nitrogenase, present in diverse microorganisms, contributes CH that could shape microbial community interactions.

摘要

甲烷(CH)是一种强效温室气体,既由化石燃料释放,也由微生物活动产生,每年至少有 10 亿吨 CH 由微生物形成和消耗。古菌使用的复杂产甲烷途径是自然界中将二氧化碳(CO)生物转化为 CH 的主要途径。在这里,我们报告来自沼泽红假单胞菌的野生型铁-铁(Fe 单加氧酶)氮酶同时将 CO、氮气(N)和质子还原为 CH、氨(NH)和氢气(H),在单一酶促步骤中。与其他产物相比,纯化的 Fe 单加氧酶产生的 CH 量较少,但当两种微生物在共培养中生长且间隔添加氧气(O)时,这种酶在沼泽红假单胞菌中产生的 CH 足以支持专性利用 CH 的甲基单胞菌菌株的生长。我们测试的其他固氮细菌在表达 Fe 单加氧酶时也形成了 CH,这表明这是该酶的普遍特性。来自各种环境的 9%的不同固氮微生物的基因组编码 Fe 单加氧酶。我们的数据表明,存在于各种微生物中的活性 Fe 单加氧酶产生的 CH 可能会影响微生物群落的相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验