Health Analytics, Columbia, Maryland.
Janssen Scientific Affairs, Titusville, New Jersey.
J Manag Care Spec Pharm. 2020 Aug;26(8):987-995. doi: 10.18553/jmcp.2020.26.8.987.
Major depressive disorder (MDD) is a prevalent and debilitating condition. While numerous treatment options are available, low treatment response and high remission rates remain common, leading to the concept of treatment-resistant depression (TRD): a classification applied to patients who fail multiple courses of therapy. A patient with TRD can only be identified after repeated, and often prolonged, therapeutic efforts.
To use data readily available to integrated delivery networks to identify characteristics predictive of TRD among patients initiating pharmacotherapy for MDD.
Decision Resources Group Real-World Data, an integrated medical/pharmacy claims and electronic health record dataset, was used to conduct a retrospective, longitudinal cohort study of patients with MDD who initiated antidepressant treatment between July 1, 2014, and December 31, 2015. Individuals were followed for 24 months to determine treatment resistance. Eligible individuals had integrated claims and electronic health record data available, completed at least 1 course of therapy of adequate dose and duration to achieve response, and had 30 months of continuous benefits eligibility (6 months before and 24 months after treatment initiation). Stepwise logistic regression and demographic, health history, health care utilization, medication, provider, and related characteristics were used to predict onset of TRD.
35,246 people met eligibility and 7,098 (20.1%) met TRD criteria after an average of 402 days. Significant predictors of TRD included patient age, diagnosis of insomnia and hypertension, psychiatric office visits, nurse telephonic encounters, anticonvulsant medication use, suicidality, physician specialty associated with index prescription, total prescription drug claims, unique antidepressants attempted, and duration of untreated illness (the lag between diagnosis and index prescription). The final model achieved an area under the curve (AUC) = 0.83. Structured patient-generated health data, specifically, the Patient Health Questionnaire-2 and the Patient Health Questionnaire-9 were only reported for 542 patients (1.5%).
TRD transition occurs after a prolonged treatment period, suggesting clinical inertia. Using data routinely available to integrated delivery networks and accountable care organizations, it is feasible to identify patients likely to qualify as treatment resistant. Monitoring risk factors may allow health systems to identify patients at risk for TRD earlier, potentially improving outcomes. Early identification of this at-risk population can allow for targeted resources for earlier intervention, more aggressive follow-up, and alternative treatment options. Furthermore, this model can be used to estimate future demand for specialized care resources, such as those delivered by mood disorder clinics.
This project was sponsored by Janssen Scientific Affairs. Pesa, Chow, and Verbanac are employed by Janssen Scientific Affairs and report stock ownership in Johnson & Johnson. Liberman, Davis, Heverly-Fitt, and Ruetsch are employed by Health Analytics, which received funding from Janssen Scientific Affairs for work on this project. This study was presented as a poster at the U.S. Psych Congress; October 3-6, 2019; San Diego, CA.
重度抑郁症(MDD)是一种普遍且虚弱的疾病。尽管有许多治疗方法,但治疗反应率低和缓解率高仍然很常见,这导致了治疗抵抗性抑郁症(TRD)的概念:一种应用于多次治疗失败的患者的分类。只有在经过反复的、通常是长期的治疗努力后,才能确定 TRD 患者。
利用综合交付网络中易于获得的数据,确定开始 MDD 药物治疗的患者中 TRD 的预测特征。
决策资源集团真实世界数据(Real-World Data)是一个综合医疗/药房索赔和电子健康记录数据集,用于对 2014 年 7 月 1 日至 2015 年 12 月 31 日期间开始抗抑郁药物治疗的 MDD 患者进行回顾性、纵向队列研究。对患者进行了 24 个月的随访,以确定治疗抵抗情况。合格的个人有综合索赔和电子健康记录数据,至少完成了 1 个疗程的足够剂量和持续时间以达到反应,并且有 30 个月的连续福利资格(治疗开始前 6 个月和治疗开始后 24 个月)。采用逐步逻辑回归和人口统计学、健康史、医疗保健利用、药物、提供者和相关特征来预测 TRD 的发生。
35246 人符合资格标准,其中 7098 人(20.1%)在平均 402 天后符合 TRD 标准。TRD 的显著预测因素包括患者年龄、失眠和高血压诊断、精神病科就诊、护士电话会诊、抗惊厥药物使用、自杀意念、与指数处方相关的医师专业、总处方药物索赔、尝试的独特抗抑郁药物和未治疗疾病的持续时间(从诊断到指数处方的滞后时间)。最终模型的曲线下面积(AUC)为 0.83。结构化的患者生成健康数据,特别是患者健康问卷-2 和患者健康问卷-9,仅报告了 542 名患者(1.5%)。
TRD 是在长时间的治疗后发生的,这表明存在临床惰性。使用综合交付网络和问责制医疗组织中常规获得的数据,可以识别出可能符合治疗抵抗标准的患者。监测风险因素可以使卫生系统更早地识别出有 TRD 风险的患者,从而改善治疗效果。早期识别高危人群可以为早期干预、更积极的随访和替代治疗方案提供有针对性的资源。此外,该模型可用于估计特殊护理资源的未来需求,例如情绪障碍诊所提供的资源。
本项目由杨森科学事务赞助。Pesa、Chow 和 Verbanac 受雇于杨森科学事务,并报告拥有强生公司的股票。Liberman、Davis、Heverly-Fitt 和 Ruetsch 受雇于健康分析公司,该公司因这项工作从杨森科学事务获得了资金。这项研究作为海报在美国心理学会大会上发表;2019 年 10 月 3 日至 6 日;圣地亚哥,加利福尼亚州。