Suppr超能文献

用于植入物功能化的结构化镍钛诺表面的生物细胞研究。

Biological Cell Investigation of Structured Nitinol Surfaces for the Functionalization of Implants.

作者信息

Hamann Isabell, Hempel Ute, Rotsch Christian, Leimert Mario

机构信息

Department of Medical Engineering, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, 01187 Saxony, Germany.

Department of Spine Center, Asklepios Orthopädische Klinik Hohwald, Neustadt i. Sa., 01844 Saxony, Germany.

出版信息

Materials (Basel). 2020 Jul 23;13(15):3264. doi: 10.3390/ma13153264.

Abstract

Expandable implants including shape memory alloy (SMA) elements have great potential to minimize the risk of implant loosening and to increase the primary stability of bone anchoring. Surface structuring of such elements may further improve these properties and support osteointegration and bone healing. In this given study, SMA sheets were processed by deploying additive and removal manufacturing technologies for 3D-printed surgical implants. The additive technology was realized by applying a new laser beam melting technology to print titanium structures on the SMA sheets. The removal step was realized as a standard process with an ultrashort-pulse laser. The morphology, metabolic activity, and mineralization patterns of human bone marrow stromal cells were examined to evaluate the biocompatibility of the new surface structures. It was shown that both surface structures support cell adhesion and the formation of a cytoskeleton. The examination of the metabolic activity of the marrow stromal cells on the samples showed that the number of cells on the laser-structured samples was lower when compared to the 3D-printed ones. The calcium phosphate accumulation, which was used to examine the mineralization of marrow stromal cells, was higher in the laser-structured samples than in the 3D-printed ones. These results indicate that the additive- and laser-structured SAM sheets seem biocompatible and that the macrostructure surface and manufacturing technology may have positive influences on the behavior of the bone formation. The use of the new additive technique and the resulting macrostructures seems to be a promising approach to combine increased anchorage stability with simultaneously enhanced osteointegration.

摘要

包括形状记忆合金(SMA)元件的可膨胀植入物在将植入物松动风险降至最低以及提高骨锚固的初始稳定性方面具有巨大潜力。此类元件的表面结构化可进一步改善这些特性,并支持骨整合和骨愈合。在本研究中,通过采用增材制造和去除制造技术对SMA薄片进行加工,以用于3D打印手术植入物。增材制造技术是通过应用一种新的激光束熔化技术在SMA薄片上打印钛结构来实现的。去除步骤则通过超短脉冲激光作为标准工艺来实现。对人骨髓基质细胞的形态、代谢活性和矿化模式进行了检查,以评估新表面结构的生物相容性。结果表明,两种表面结构均支持细胞黏附并形成细胞骨架。对样品上骨髓基质细胞代谢活性的检查表明,与3D打印样品相比,激光结构化样品上的细胞数量较少。用于检查骨髓基质细胞矿化的磷酸钙积累在激光结构化样品中比在3D打印样品中更高。这些结果表明,增材制造和激光结构化的SMA薄片似乎具有生物相容性,并且宏观结构表面和制造技术可能对骨形成行为有积极影响。使用新的增材制造技术以及由此产生的宏观结构似乎是一种将增加的锚固稳定性与同时增强的骨整合相结合的有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0adf/7435443/989b1a5cc660/materials-13-03264-g001.jpg

相似文献

引用本文的文献

4
Smart Materials.智能材料
Materials (Basel). 2022 Sep 11;15(18):6307. doi: 10.3390/ma15186307.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验