Suppr超能文献

细菌差异表达分析方法。

Bacterial Differential Expression Analysis Methods.

机构信息

Purdue University Center for Cancer Research, West Lafayette, IN, USA.

Lanza Tech, Skokie, IL, USA.

出版信息

Methods Mol Biol. 2020;2096:89-112. doi: 10.1007/978-1-0716-0195-2_8.

Abstract

RNA-Seq examines global gene expression to provide insights into cellular processes, and it can be particularly informative when comparing contrasting physiological states or strains. Although relatively routine in many laboratories, there are many steps involved in performing a transcriptomics experiment to ensure representative and high-quality results are generated for analysis. In this chapter, we present the application of widely used bioinformatic methodologies to assess, trim, and filter RNA-seq reads for quality using FastQC and Trim Galore, respectively. High-quality reads are mapped using Bowtie2 and differentially expressed genes across different groups were estimated using the DEseq2 R-Bioconductor package. In addition, we describe the various steps to perform the sample-wise data quality assessment by generating exploratory plots through the DESeq2 package. Simple steps to calculate the significant differentially expressed genes, up- and down-regulated genes, and exporting the data and images are also included. A Venn diagram is a useful method to compare the differentially expressed genes across various comparisons and steps to generate the Venn diagram from DESeq2 results are provided. Finally, the output from DESeq2 is compared to published results from EdgeR. The Clostridium autoethanogenum data are published and publicly available.

摘要

RNA-Seq 检测全局基因表达,为细胞过程提供深入见解,在比较对比明显的生理状态或菌株时特别有用。尽管在许多实验室中相对常规,但进行转录组学实验涉及许多步骤,以确保为分析生成有代表性且高质量的结果。在本章中,我们介绍了广泛使用的生物信息学方法的应用,分别使用 FastQC 和 Trim Galore 评估、修剪和过滤 RNA-seq 读取的质量。使用 Bowtie2 映射高质量读取,并使用 DEseq2 R-Bioconductor 包估计不同组之间的差异表达基因。此外,我们描述了通过生成通过 DESeq2 包的探索性图来执行样本数据质量评估的各个步骤。还包括计算显著差异表达基因、上调和下调基因以及导出数据和图像的简单步骤。Venn 图是比较不同比较和步骤之间差异表达基因的有用方法,并提供了从 DESeq2 结果生成 Venn 图的步骤。最后,将 DESeq2 的输出与 EdgeR 发表的结果进行比较。Clostridium autoethanogenum 数据已发布并可公开获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验