UMR 8067, Biologie Des Organismes Et Écosystèmes Aquatiques (BOREA), Sorbonne Université, Muséum National d'Histoire Naturelle, Université de Caen Normandie, Université Des Antilles, CNRS, IRD, CP26, 43 Rue Cuvier, 75005, Paris, France.
Synchrotron SOLEIL, 91192, Saint-Aubin, France.
Sci Rep. 2023 Mar 23;13(1):4794. doi: 10.1038/s41598-023-31798-z.
Scientists use otoliths to trace fish life history, especially fish migrations. Otoliths incorporate signatures of individual growth and environmental use. For many species, distinct increment patterns in the otolith are difficult to discern; thus, questions remain about crucial life history information. To unravel the history of such species, we use synchrotron-based scanning X-ray fluorescence. It allows the mapping of elements on the entire otolith at a high spatial resolution. It gives access to precise fish migration history by tagging landmark signature for environmental transition and it also characterises localised growth processes at a mineral level. Freshwater pipefish, which are of conservation concern, have otoliths that are small and fragile. Growth increments are impossible to identify and count; therefore, there is a major lack of knowledge about their life history. We confirm for the first time, by mapping strontium that the two tropical pipefish species studied are diadromous (transition freshwater/marine/freshwater). Mapping of other elements uncovered the existence of different migratory routes during the marine phase. Another major breakthrough is that we can chemically count growth increments solely based on sulphur signal as it is implicated in biomineralization processes. This novel method circumvents reader bias issues and enables age estimation even for otoliths with seemingly untraceable increments. The high spatial resolution elemental mapping methods push back limits of studies on life traits or stock characterisation.
科学家们利用耳石来追踪鱼类的生活史,特别是鱼类的洄游。耳石记录了个体生长和环境利用的特征。对于许多物种来说,耳石中明显的增量模式很难识别;因此,关于关键的生活史信息仍然存在疑问。为了揭示这些物种的历史,我们使用基于同步加速器的扫描 X 射线荧光技术。它允许以高空间分辨率在整个耳石上绘制元素图谱。它通过标记环境过渡的标志性签名来获取精确的鱼类迁移历史,并且还可以在矿物水平上描述局部生长过程。淡水海龙,由于受到保护的关注,它们的耳石很小且脆弱。生长增量不可能被识别和计数;因此,关于它们的生活史,我们知之甚少。我们首次通过绘制锶图证实,所研究的两种热带海龙物种都是洄游性的(从淡水到海洋再到淡水的过渡)。其他元素的图谱揭示了在海洋阶段存在不同的洄游路线。另一个重大突破是,我们可以仅基于硫信号来化学计数生长增量,因为硫信号与生物矿化过程有关。这种新方法规避了读者偏见问题,并使我们即使在那些看似无法追踪增量的耳石上也能够进行年龄估计。高空间分辨率的元素图谱方法推动了对生活特征或种群特征研究的限制。