Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
National Centre for Biological Sciences, TIFR, Bangalore, India.
Dev Dyn. 2021 Jan;250(1):60-73. doi: 10.1002/dvdy.227. Epub 2020 Sep 3.
Muscle myofibrils and sarcomeres present exceptional examples of highly ordered cytoskeletal filament arrays, whose distinct spatial organization is an essential aspect of muscle cell functionality. We utilized ultra-structural analysis to investigate the assembly of myofibrils and sarcomeres within developing myotubes of the indirect flight musculature of Drosophila.
A temporal sequence composed of three major processes was identified: subdivision of the unorganized cytoplasm of nascent, multi-nucleated myotubes into distinct organelle-rich and filament-rich domains; initial organization of the filament-rich domains into myofibrils harboring nascent sarcomeric units; and finally, maturation of the highly-ordered pattern of sarcomeric thick (myosin-based) and thin (microfilament-based) filament arrays in parallel to myofibril radial growth. Significantly, organized microtubule arrays were present throughout these stages and exhibited dynamic changes in their spatial patterns consistent with instructive roles. Genetic manipulations confirm these notions, and imply specific and critical guidance activities of the microtubule-based cytoskeleton, as well as structural interdependence between the myosin- and actin-based filament arrays.
Our observations highlight a surprisingly significant, behind-the-scenes role for microtubules in establishment of myofibril and sarcomere spatial patterns and size, and provide a detailed account of the interplay between major cytoskeletal elements in generating these essential contractile myogenic units.
肌肉肌原纤维和肌节呈现出高度有序的细胞骨架丝状体的特殊例子,其独特的空间组织是肌肉细胞功能的重要方面。我们利用超微结构分析来研究果蝇间接飞行肌肉的未成熟多核肌管中肌原纤维和肌节的组装。
确定了一个由三个主要过程组成的时间序列:将未组织的细胞质分割成不同的细胞器丰富和细丝丰富的区域;将细丝丰富的区域初始组织成含有新生肌节单位的肌原纤维;最后,肌节的高度有序的模式,包括肌球蛋白(基于肌球蛋白)和细丝(基于微丝)细丝的成熟,与肌原纤维的径向生长平行。重要的是,有组织的微管阵列在这些阶段都存在,并表现出与其指导作用一致的空间模式的动态变化。遗传操作证实了这些观点,并暗示微管细胞骨架具有特定和关键的引导作用,以及肌球蛋白和肌动蛋白丝状体之间的结构相互依存性。
我们的观察结果强调了微管在肌原纤维和肌节空间模式和大小的建立中扮演了一个惊人的、幕后的角色,并提供了一个关于主要细胞骨架元件在产生这些基本的收缩性肌原单位中的相互作用的详细描述。