Meso Andrew Isaac, De Vai Robert L, Mahabeer Ashakee, Hills Peter J
Neuroimaging Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Institut de Neuroscience de la Timone, Team Invibe, CNRS & Aix-Marseille Université, Marseille, 13005, France.
Eur J Neurosci. 2020 Dec;52(12):4803-4823. doi: 10.1111/ejn.14926. Epub 2020 Aug 13.
We move our eyes to place the fovea into the part of a viewed scene currently of interest. Recent evidence suggests that each human has signature patterns of eye movements like handwriting which depend on their sensitivity, allocation of attention and experience. Use of implicit knowledge of how earth's gravity influences object motion has been shown to aid dynamic perception. We used a projected ball-tracking task with a plain background offering no context cues to probe the effect of acquired experience about physical laws of gravitation on performance differences of 44 participants under a simulated gravity and an atypical (upward) antigravity condition. Performance measured by the unsigned difference between instantaneous eye and stimulus positions (RMSE) was consistently worse in the antigravity condition. In the vertical RMSE, participants took about 200 ms longer to improve to the best performance for antigravity compared to gravity trials. The antigravity condition produced a divergence of individual performance which was correlated with levels of questionnaire-based quantified traits of schizotypy but not control traits. Grouping participants by high or low traits revealed a negative relationship between schizotypy trait level and both initiation and maintenance of tracking, a result consistent with trait-related impoverished sensory prediction. The findings confirm for the first time that where cues enabling exact estimation of acceleration are unavailable, knowledge of gravity contributes to dynamic prediction improving motion processing. With acceleration expectations violated, we demonstrate that antigravity tracking could act as a multivariate diagnostic window into predictive brain function.
我们移动眼睛,将中央凹对准当前感兴趣的视觉场景部分。最近的证据表明,每个人都有独特的眼动模式,就像笔迹一样,这取决于他们的敏感度、注意力分配和经验。研究表明,利用地球引力如何影响物体运动的隐性知识有助于动态感知。我们使用了一个投射式球跟踪任务,背景为纯色,不提供上下文线索,以探究在模拟重力和非典型(向上)反重力条件下,关于引力物理定律的习得经验对44名参与者表现差异的影响。在反重力条件下,用瞬时眼睛位置与刺激位置之间的无符号差异(均方根误差,RMSE)衡量的表现始终较差。在垂直RMSE方面,与重力试验相比,参与者在反重力条件下达到最佳表现所需的时间要长约200毫秒。反重力条件导致个体表现出现差异,这种差异与基于问卷的精神分裂症量化特征水平相关,但与对照特征无关。根据特征高低对参与者进行分组后发现,精神分裂症特征水平与跟踪的启动和维持均呈负相关,这一结果与特征相关的感觉预测能力不足一致。这些发现首次证实,在无法获得能够精确估计加速度的线索时,引力知识有助于动态预测,从而改善运动处理。当加速度预期被违反时,我们证明反重力跟踪可以作为一个多变量诊断窗口,用于了解预测性脑功能。