文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工神经网络可改善 ICU 收治的院外心脏骤停患者的早期预后预测和风险分类。

Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care.

机构信息

Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Helsingborg Hospital, Lund University, Helsingborg, Sweden.

Department of Anaesthesiology and Intensive Care, Helsingborg Hospital, Charlotte Yléns Gata 10, SE-251 87, Helsingborg, Sweden.

出版信息

Crit Care. 2020 Jul 30;24(1):474. doi: 10.1186/s13054-020-03103-1.


DOI:10.1186/s13054-020-03103-1
PMID:32731878
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7394679/
Abstract

BACKGROUND: Pre-hospital circumstances, cardiac arrest characteristics, comorbidities and clinical status on admission are strongly associated with outcome after out-of-hospital cardiac arrest (OHCA). Early prediction of outcome may inform prognosis, tailor therapy and help in interpreting the intervention effect in heterogenous clinical trials. This study aimed to create a model for early prediction of outcome by artificial neural networks (ANN) and use this model to investigate intervention effects on classes of illness severity in cardiac arrest patients treated with targeted temperature management (TTM). METHODS: Using the cohort of the TTM trial, we performed a post hoc analysis of 932 unconscious patients from 36 centres with OHCA of a presumed cardiac cause. The patient outcome was the functional outcome, including survival at 180 days follow-up using a dichotomised Cerebral Performance Category (CPC) scale with good functional outcome defined as CPC 1-2 and poor functional outcome defined as CPC 3-5. Outcome prediction and severity class assignment were performed using a supervised machine learning model based on ANN. RESULTS: The outcome was predicted with an area under the receiver operating characteristic curve (AUC) of 0.891 using 54 clinical variables available on admission to hospital, categorised as background, pre-hospital and admission data. Corresponding models using background, pre-hospital or admission variables separately had inferior prediction performance. When comparing the ANN model with a logistic regression-based model on the same cohort, the ANN model performed significantly better (p = 0.029). A simplified ANN model showed promising performance with an AUC above 0.852 when using three variables only: age, time to ROSC and first monitored rhythm. The ANN-stratified analyses showed similar intervention effect of TTM to 33 °C or 36 °C in predefined classes with different risk of a poor outcome. CONCLUSION: A supervised machine learning model using ANN predicted neurological recovery, including survival excellently, and outperformed a conventional model based on logistic regression. Among the data available at the time of hospitalisation, factors related to the pre-hospital setting carried most information. ANN may be used to stratify a heterogenous trial population in risk classes and help determine intervention effects across subgroups.

摘要

背景:院外心脏骤停(OHCA)后,院前情况、心脏骤停特征、合并症和入院时的临床状况与预后密切相关。早期预测预后可以告知预后、调整治疗,并有助于解释异质性临床试验中的干预效果。本研究旨在通过人工神经网络(ANN)创建一种早期预后预测模型,并使用该模型研究目标温度管理(TTM)治疗的心脏骤停患者的疾病严重程度类别对干预效果的影响。

方法:使用 TTM 试验的队列,我们对 36 个中心的 932 名无意识 OHCA 患者进行了一项事后分析,这些患者的病因推测为心脏原因。患者的结局是功能结局,包括使用二分 Cerebral Performance Category(CPC)量表进行 180 天随访时的生存情况,良好的功能结局定义为 CPC 1-2,不良的功能结局定义为 CPC 3-5。使用基于 ANN 的监督机器学习模型进行预后预测和严重程度分类。

结果:使用入院时可用的 54 个临床变量,使用基于 ANN 的模型预测结局的受试者工作特征曲线下面积(AUC)为 0.891,这些变量分为背景、院前和入院数据。分别使用背景、院前或入院变量的相应模型预测性能较差。当将 ANN 模型与相同队列中的基于逻辑回归的模型进行比较时,ANN 模型的表现明显更好(p=0.029)。当仅使用三个变量(年龄、ROSC 时间和首次监测节律)时,简化的 ANN 模型表现出有前途的性能,AUC 高于 0.852。ANN 分层分析表明,在不同预后不良风险的预设类别中,TTM 对 33°C 或 36°C 的干预效果相似。

结论:使用 ANN 的监督机器学习模型出色地预测了神经恢复,包括生存情况,并且优于基于逻辑回归的传统模型。在入院时可用的数据中,与院前环境相关的因素携带了最多的信息。ANN 可用于将异质试验人群分层为风险类别,并有助于确定亚组中的干预效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/dadb4fba201e/13054_2020_3103_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/0b996b94e2bd/13054_2020_3103_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/b25f7c7f96db/13054_2020_3103_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/0d66f3e0cb05/13054_2020_3103_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/9473c0990c2f/13054_2020_3103_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/dadb4fba201e/13054_2020_3103_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/0b996b94e2bd/13054_2020_3103_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/b25f7c7f96db/13054_2020_3103_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/0d66f3e0cb05/13054_2020_3103_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/9473c0990c2f/13054_2020_3103_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ef5/7394679/dadb4fba201e/13054_2020_3103_Fig5_HTML.jpg

相似文献

[1]
Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care.

Crit Care. 2020-7-30

[2]
Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm.

Crit Care. 2021-2-25

[3]
Early predictors of poor outcome after out-of-hospital cardiac arrest.

Crit Care. 2017-4-13

[4]
Single versus Serial Measurements of Neuron-Specific Enolase and Prediction of Poor Neurological Outcome in Persistently Unconscious Patients after Out-Of-Hospital Cardiac Arrest - A TTM-Trial Substudy.

PLoS One. 2017-1-18

[5]
Artificial neural network-boosted Cardiac Arrest Survival Post-Resuscitation In-hospital (CASPRI) score accurately predicts outcome in cardiac arrest patients treated with targeted temperature management.

Sci Rep. 2022-5-4

[6]
A prediction model for good neurological outcome in successfully resuscitated out-of-hospital cardiac arrest patients.

Scand J Trauma Resusc Emerg Med. 2018-11-9

[7]
Factors determining level of hospital care and its association with outcome after resuscitation from pre-hospital pulseless electrical activity.

Scand J Trauma Resusc Emerg Med. 2018-11-19

[8]
Predicting the survivals and favorable neurologic outcomes after targeted temperature management by artificial neural networks.

J Formos Med Assoc. 2022-2

[9]
Neurological recovery after out-of-hospital cardiac arrest: hospital admission predictors and one-year survival in an urban cardiac network experience.

Minerva Cardioangiol. 2013-8

[10]
Recorded time periods of bispectral index values equal to zero predict neurological outcome after out-of-hospital cardiac arrest.

Crit Care. 2017-8-22

引用本文的文献

[1]
Applications of Artificial Intelligence in Out-of-Hospital Cardiac Arrest: A Systematic Review.

Cureus. 2025-4-15

[2]
Real-time image fusion and Apple Vision Pro in laparoscopic microwave ablation of hepatic hemangiomas.

NPJ Precis Oncol. 2025-3-20

[3]
Machine Learning Approaches to Clinical Prognostication After Cardiac Arrest: Principles and Uncertainty.

Neurocrit Care. 2025-2-20

[4]
Personalized Predictions of Therapeutic Hypothermia Outcomes in Cardiac Arrest Patients with Shockable Rhythms Using Explainable Machine Learning.

Diagnostics (Basel). 2025-1-23

[5]
Using artificial intelligence to optimize anti-seizure treatment and EEG-guided decisions in severe brain injury.

Neurotherapeutics. 2025-1

[6]
Application of artificial intelligence in the health management of chronic disease: bibliometric analysis.

Front Med (Lausanne). 2025-1-7

[7]
Beyond traditional prognostics: integrating RAG-enhanced AtlasGPT and ChatGPT 4.0 into aneurysmal subarachnoid hemorrhage outcome prediction.

Neurosurg Rev. 2025-1-11

[8]
A Machine Learning-Based Decision Support System for the Prognostication of Neurological Outcomes in Successfully Resuscitated Out-of-Hospital Cardiac Arrest Patients.

J Clin Med. 2024-12-13

[9]
Role of artificial intelligence in predicting neurological outcomes in postcardiac resuscitation.

Ann Med Surg (Lond). 2024-10-22

[10]
Application of multi-feature-based machine learning models to predict neurological outcomes of cardiac arrest.

Resusc Plus. 2024-11-21

本文引用的文献

[1]
Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services.

Scand J Trauma Resusc Emerg Med. 2020-3-4

[2]
Machine learning-based dynamic mortality prediction after traumatic brain injury.

Sci Rep. 2019-11-27

[3]
Targeted hypothermia versus targeted Normothermia after out-of-hospital cardiac arrest (TTM2): A randomized clinical trial-Rationale and design.

Am Heart J. 2019-6-26

[4]
Artificial neural networks improve and simplify intensive care mortality prognostication: a national cohort study of 217,289 first-time intensive care unit admissions.

J Intensive Care. 2019-8-16

[5]
An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction.

Lancet. 2019-8-1

[6]
Outcome prediction of out-of-hospital cardiac arrest with presumed cardiac aetiology using an advanced machine learning technique.

Resuscitation. 2019-6-17

[7]
Update in Neurocritical Care: a summary of the 2018 Paris international conference of the French Society of Intensive Care.

Ann Intensive Care. 2019-4-16

[8]
Developing neural network models for early detection of cardiac arrest in emergency department.

Am J Emerg Med. 2019-4-7

[9]
Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes.

Resuscitation. 2019-4-9

[10]
A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models.

J Clin Epidemiol. 2019-2-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索