Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Helsingborg Hospital, Lund University, Helsingborg, Sweden.
Department of Anaesthesiology and Intensive Care, Helsingborg Hospital, Charlotte Yléns Gata 10, SE-251 87, Helsingborg, Sweden.
Crit Care. 2020 Jul 30;24(1):474. doi: 10.1186/s13054-020-03103-1.
BACKGROUND: Pre-hospital circumstances, cardiac arrest characteristics, comorbidities and clinical status on admission are strongly associated with outcome after out-of-hospital cardiac arrest (OHCA). Early prediction of outcome may inform prognosis, tailor therapy and help in interpreting the intervention effect in heterogenous clinical trials. This study aimed to create a model for early prediction of outcome by artificial neural networks (ANN) and use this model to investigate intervention effects on classes of illness severity in cardiac arrest patients treated with targeted temperature management (TTM). METHODS: Using the cohort of the TTM trial, we performed a post hoc analysis of 932 unconscious patients from 36 centres with OHCA of a presumed cardiac cause. The patient outcome was the functional outcome, including survival at 180 days follow-up using a dichotomised Cerebral Performance Category (CPC) scale with good functional outcome defined as CPC 1-2 and poor functional outcome defined as CPC 3-5. Outcome prediction and severity class assignment were performed using a supervised machine learning model based on ANN. RESULTS: The outcome was predicted with an area under the receiver operating characteristic curve (AUC) of 0.891 using 54 clinical variables available on admission to hospital, categorised as background, pre-hospital and admission data. Corresponding models using background, pre-hospital or admission variables separately had inferior prediction performance. When comparing the ANN model with a logistic regression-based model on the same cohort, the ANN model performed significantly better (p = 0.029). A simplified ANN model showed promising performance with an AUC above 0.852 when using three variables only: age, time to ROSC and first monitored rhythm. The ANN-stratified analyses showed similar intervention effect of TTM to 33 °C or 36 °C in predefined classes with different risk of a poor outcome. CONCLUSION: A supervised machine learning model using ANN predicted neurological recovery, including survival excellently, and outperformed a conventional model based on logistic regression. Among the data available at the time of hospitalisation, factors related to the pre-hospital setting carried most information. ANN may be used to stratify a heterogenous trial population in risk classes and help determine intervention effects across subgroups.
背景:院外心脏骤停(OHCA)后,院前情况、心脏骤停特征、合并症和入院时的临床状况与预后密切相关。早期预测预后可以告知预后、调整治疗,并有助于解释异质性临床试验中的干预效果。本研究旨在通过人工神经网络(ANN)创建一种早期预后预测模型,并使用该模型研究目标温度管理(TTM)治疗的心脏骤停患者的疾病严重程度类别对干预效果的影响。
方法:使用 TTM 试验的队列,我们对 36 个中心的 932 名无意识 OHCA 患者进行了一项事后分析,这些患者的病因推测为心脏原因。患者的结局是功能结局,包括使用二分 Cerebral Performance Category(CPC)量表进行 180 天随访时的生存情况,良好的功能结局定义为 CPC 1-2,不良的功能结局定义为 CPC 3-5。使用基于 ANN 的监督机器学习模型进行预后预测和严重程度分类。
结果:使用入院时可用的 54 个临床变量,使用基于 ANN 的模型预测结局的受试者工作特征曲线下面积(AUC)为 0.891,这些变量分为背景、院前和入院数据。分别使用背景、院前或入院变量的相应模型预测性能较差。当将 ANN 模型与相同队列中的基于逻辑回归的模型进行比较时,ANN 模型的表现明显更好(p=0.029)。当仅使用三个变量(年龄、ROSC 时间和首次监测节律)时,简化的 ANN 模型表现出有前途的性能,AUC 高于 0.852。ANN 分层分析表明,在不同预后不良风险的预设类别中,TTM 对 33°C 或 36°C 的干预效果相似。
结论:使用 ANN 的监督机器学习模型出色地预测了神经恢复,包括生存情况,并且优于基于逻辑回归的传统模型。在入院时可用的数据中,与院前环境相关的因素携带了最多的信息。ANN 可用于将异质试验人群分层为风险类别,并有助于确定亚组中的干预效果。
Crit Care. 2017-4-13
Scand J Trauma Resusc Emerg Med. 2018-11-9
Scand J Trauma Resusc Emerg Med. 2018-11-19
NPJ Precis Oncol. 2025-3-20
Front Med (Lausanne). 2025-1-7
Ann Med Surg (Lond). 2024-10-22
Scand J Trauma Resusc Emerg Med. 2020-3-4
Am J Emerg Med. 2019-4-7