Suppr超能文献

利用累积信息预测院外心脏骤停后的神经功能结局;人工神经网络算法的开发和内部验证。

Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm.

机构信息

Department of Clinical Sciences Lund, Anaesthesia and Intensive Care, Lund University, Skåne University Hospital, Lund, Sweden.

Department of Intensive and Perioperative Care, Skåne University Hospital, Getingevägen 4, 222 41, LundLund, Sweden.

出版信息

Crit Care. 2021 Feb 25;25(1):83. doi: 10.1186/s13054-021-03505-9.

Abstract

BACKGROUND

Prognostication of neurological outcome in patients who remain comatose after cardiac arrest resuscitation is complex. Clinical variables, as well as biomarkers of brain injury, cardiac injury, and systemic inflammation, all yield some prognostic value. We hypothesised that cumulative information obtained during the first three days of intensive care could produce a reliable model for predicting neurological outcome following out-of-hospital cardiac arrest (OHCA) using artificial neural network (ANN) with and without biomarkers.

METHODS

We performed a post hoc analysis of 932 patients from the Target Temperature Management trial. We focused on comatose patients at 24, 48, and 72 h post-cardiac arrest and excluded patients who were awake or deceased at these time points. 80% of the patients were allocated for model development (training set) and 20% for internal validation (test set). To investigate the prognostic potential of different levels of biomarkers (clinically available and research-grade), patients' background information, and intensive care observation and treatment, we created three models for each time point: (1) clinical variables, (2) adding clinically accessible biomarkers, e.g., neuron-specific enolase (NSE) and (3) adding research-grade biomarkers, e.g., neurofilament light (NFL). Patient outcome was the dichotomised Cerebral Performance Category (CPC) at six months; a good outcome was defined as CPC 1-2 whilst a poor outcome was defined as CPC 3-5. The area under the receiver operating characteristic curve (AUROC) was calculated for all test sets.

RESULTS

AUROC remained below 90% when using only clinical variables throughout the first three days in the ICU. Adding clinically accessible biomarkers such as NSE, AUROC increased from 82 to 94% (p < 0.01). The prognostic accuracy remained excellent from day 1 to day 3 with an AUROC at approximately 95% when adding research-grade biomarkers. The models which included NSE after 72 h and NFL on any of the three days had a low risk of false-positive predictions while retaining a low number of false-negative predictions.

CONCLUSIONS

In this exploratory study, ANNs provided good to excellent prognostic accuracy in predicting neurological outcome in comatose patients post OHCA. The models which included NSE after 72 h and NFL on all days showed promising prognostic performance.

摘要

背景

心脏骤停复苏后仍处于昏迷状态的患者的神经预后预测较为复杂。临床变量以及脑损伤、心脏损伤和全身炎症的生物标志物均具有一定的预后价值。我们假设,在重症监护的头三天内获得的累积信息可以使用人工神经网络(ANN)和无生物标志物的 ANN 为院外心脏骤停(OHCA)后预测神经预后提供可靠的模型。

方法

我们对 Target Temperature Management 试验中的 932 名患者进行了事后分析。我们重点关注心脏骤停后 24、48 和 72 小时的昏迷患者,并排除了这些时间点已经清醒或死亡的患者。80%的患者被分配用于模型开发(训练集),20%用于内部验证(测试集)。为了研究不同水平的生物标志物(临床可用和研究级)、患者背景信息以及重症监护观察和治疗的预后潜力,我们为每个时间点创建了三个模型:(1)临床变量,(2)添加临床可用的生物标志物,例如神经元特异性烯醇化酶(NSE),(3)添加研究级生物标志物,例如神经丝轻链(NFL)。患者的预后是六个月时的二分类脑功能预后分类(CPC),良好的预后定义为 CPC 1-2,较差的预后定义为 CPC 3-5。所有测试集的接收者操作特征曲线(AUROC)下面积均进行了计算。

结果

在重症监护的头三天仅使用临床变量时,AUROC 始终低于 90%。添加临床可用的生物标志物,如 NSE,AUROC 从 82%增加到 94%(p<0.01)。在添加研究级生物标志物的情况下,从第一天到第三天,预后准确性仍然非常出色,AUROC 约为 95%。在 72 小时后包含 NSE 或在任何三天内包含 NFL 的模型具有低的假阳性预测风险,同时保留了低数量的假阴性预测。

结论

在这项探索性研究中,人工神经网络在预测 OHCA 后昏迷患者的神经预后方面提供了良好到极好的准确性。包含 NSE 后 72 小时和所有三天内的 NFL 的模型显示出有前途的预后性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfef/7905905/ba270ee5d00a/13054_2021_3505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验