Suppr超能文献

铁稳态与植物免疫反应:最新见解及转化意义。

Iron homeostasis and plant immune responses: Recent insights and translational implications.

机构信息

School of Plant and Environmental Sciences, Virginia Tech, Latham Hall, Blacksburg, Virginia, USA.

Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.

出版信息

J Biol Chem. 2020 Sep 25;295(39):13444-13457. doi: 10.1074/jbc.REV120.010856. Epub 2020 Jul 30.

Abstract

Iron metabolism and the plant immune system are both critical for plant vigor in natural ecosystems and for reliable agricultural productivity. Mechanistic studies of plant iron home-ostasis and plant immunity have traditionally been carried out in isolation from each other; however, our growing understanding of both processes has uncovered significant connections. For example, iron plays a critical role in the generation of reactive oxygen intermediates during immunity and has been recently implicated as a critical factor for immune-initiated cell death via ferroptosis. Moreover, plant iron stress triggers immune activation, suggesting that sensing of iron depletion is a mechanism by which plants recognize a pathogen threat. The iron deficiency response engages hormone signaling sectors that are also utilized for plant immune signaling, providing a probable explanation for iron-immunity cross-talk. Finally, interference with iron acquisition by pathogens might be a critical component of the immune response. Efforts to address the global burden of iron deficiency-related anemia have focused on classical breeding and transgenic approaches to develop crops biofortified for iron content. However, our improved mechanistic understanding of plant iron metabolism suggests that such alterations could promote or impede plant immunity, depending on the nature of the alteration and the virulence strategy of the pathogen. Effects of iron biofortification on disease resistance should be evaluated while developing plants for iron biofortification.

摘要

铁代谢和植物免疫系统对于自然生态系统中植物的活力和可靠的农业生产力都至关重要。植物铁稳态和植物免疫的机制研究传统上是彼此孤立进行的;然而,我们对这两个过程的认识不断加深,揭示了它们之间存在着显著的联系。例如,铁在免疫过程中活性氧中间体的产生中起着关键作用,最近铁被牵连为通过铁死亡引发免疫起始细胞死亡的关键因素。此外,植物缺铁会引发免疫激活,这表明铁耗竭的感知是植物识别病原体威胁的一种机制。缺铁反应涉及激素信号转导途径,这些途径也用于植物免疫信号转导,为铁-免疫交叉对话提供了一个可能的解释。最后,病原体对铁获取的干扰可能是免疫反应的一个关键组成部分。为了解决与缺铁相关的贫血的全球负担,人们主要致力于通过经典的育种和转基因方法来开发富含铁的作物。然而,我们对植物铁代谢的机制理解的提高表明,这种改变可能促进或阻碍植物免疫,具体取决于改变的性质和病原体的毒力策略。在开发富含铁的植物时,应该评估铁生物强化对疾病抗性的影响。

相似文献

1
Iron homeostasis and plant immune responses: Recent insights and translational implications.
J Biol Chem. 2020 Sep 25;295(39):13444-13457. doi: 10.1074/jbc.REV120.010856. Epub 2020 Jul 30.
2
Immunity to plant pathogens and iron homeostasis.
Plant Sci. 2015 Nov;240:90-7. doi: 10.1016/j.plantsci.2015.08.022. Epub 2015 Aug 29.
3
Iron and Immunity.
Annu Rev Phytopathol. 2017 Aug 4;55:355-375. doi: 10.1146/annurev-phyto-080516-035537. Epub 2017 Jun 9.
4
Transcriptome landscape of a bacterial pathogen under plant immunity.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E3055-E3064. doi: 10.1073/pnas.1800529115. Epub 2018 Mar 12.
5
New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals?
J Exp Bot. 2015 Jun;66(11):3001-10. doi: 10.1093/jxb/erv155. Epub 2015 May 1.
6
The role of iron in the immune response to bacterial infection.
Immunol Res. 2011 May;50(1):1-9. doi: 10.1007/s12026-010-8199-1.
7
Iron and immunity: immunological consequences of iron deficiency and overload.
Arch Immunol Ther Exp (Warsz). 2010 Dec;58(6):407-15. doi: 10.1007/s00005-010-0095-9. Epub 2010 Sep 28.
8
Endoplasmic Reticulum Stress Signaling in Plant Immunity--At the Crossroad of Life and Death.
Int J Mol Sci. 2015 Nov 5;16(11):26582-98. doi: 10.3390/ijms161125964.
9
Tick Tock: Circadian Regulation of Plant Innate Immunity.
Annu Rev Phytopathol. 2017 Aug 4;55:287-311. doi: 10.1146/annurev-phyto-080516-035451. Epub 2017 Jun 7.
10
Hormone defense networking in rice: tales from a different world.
Trends Plant Sci. 2013 Oct;18(10):555-65. doi: 10.1016/j.tplants.2013.07.002. Epub 2013 Jul 30.

引用本文的文献

1
Thiamine is a vitamin for plant-pathogenic powdery mildew fungi.
iScience. 2025 Jul 15;28(8):113123. doi: 10.1016/j.isci.2025.113123. eCollection 2025 Aug 15.
3
The Role of Organic Materials in Shaping the Content of Trace Elements in Iron-Contaminated Soil.
Materials (Basel). 2025 Mar 28;18(7):1522. doi: 10.3390/ma18071522.
5
Combating plant diseases through transition metal allocation.
New Phytol. 2025 Mar;245(5):1833-1842. doi: 10.1111/nph.20366. Epub 2024 Dec 20.
7
Genome-wide association study reveals effect of nsSNPs on candidate genes in rice during iron deficiency.
Funct Integr Genomics. 2024 Oct 25;24(6):198. doi: 10.1007/s10142-024-01478-w.

本文引用的文献

2
The iron deficiency response in requires the phosphorylated transcription factor URI.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):24933-24942. doi: 10.1073/pnas.1916892116. Epub 2019 Nov 27.
4
The Combined Strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa).
Sci Rep. 2019 Nov 6;9(1):16144. doi: 10.1038/s41598-019-52502-0.
6
Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling.
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17584-17591. doi: 10.1073/pnas.1907971116. Epub 2019 Aug 14.
7
FIT-Binding Proteins and Their Functions in the Regulation of Fe Homeostasis.
Front Plant Sci. 2019 Jun 26;10:844. doi: 10.3389/fpls.2019.00844. eCollection 2019.
8
Mutual interplay of Ca and ROS signaling in plant immune response.
Plant Sci. 2019 Jun;283:343-354. doi: 10.1016/j.plantsci.2019.03.004. Epub 2019 Mar 18.
9
Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics.
Plant Cell Physiol. 2019 Jul 1;60(7):1447-1456. doi: 10.1093/pcp/pcz079.
10
Potential of sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ().
Front Plant Sci. 2019 Mar 18;10:308. doi: 10.3389/fpls.2019.00308. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验