Wang Jonathan X, Sullivan Delaney K, Wells Alex C, Chen Jonathan H
Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
JAMIA Open. 2020 Jun 28;3(2):216-224. doi: 10.1093/jamiaopen/ooaa021. eCollection 2020 Jul.
This study assesses whether neural networks trained on electronic health record (EHR) data can anticipate what individual clinical orders and existing institutional order set templates clinicians will use more accurately than existing decision support tools.
We process 57 624 patients worth of clinical event EHR data from 2008 to 2014. We train a feed-forward neural network (ClinicNet) and logistic regression applied to the traditional problem structure of predicting individual clinical items as well as our proposed workflow of predicting existing institutional order set template usage.
ClinicNet predicts individual clinical orders (precision = 0.32, recall = 0.47) better than existing institutional order sets (precision = 0.15, recall = 0.46). The ClinicNet model predicts clinician usage of existing institutional order sets (avg. precision = 0.31) with higher average precision than a baseline of order set usage frequencies (avg. precision = 0.20) or a logistic regression model (avg. precision = 0.12).
Machine learning methods can predict clinical decision-making patterns with greater accuracy and less manual effort than existing static order set templates. This can streamline existing clinical workflows, but may not fit if historical clinical ordering practices are incorrect. For this reason, manually authored content such as order set templates remain valuable for the purposeful design of care pathways. ClinicNet's capability of predicting such personalized order set templates illustrates the potential of combining both top-down and bottom-up approaches to delivering clinical decision support content.
ClinicNet illustrates the capability for machine learning methods applied to the EHR to anticipate both individual clinical orders and existing order set templates, which has the potential to improve upon current standards of practice in clinical order entry.
本研究评估基于电子健康记录(EHR)数据训练的神经网络是否能够比现有决策支持工具更准确地预测临床医生将使用的个体临床医嘱和现有机构医嘱集模板。
我们处理了2008年至2014年期间57624例患者的临床事件EHR数据。我们训练了一个前馈神经网络(ClinicNet),并将逻辑回归应用于预测个体临床项目的传统问题结构以及我们提出的预测现有机构医嘱集模板使用情况的工作流程。
ClinicNet在预测个体临床医嘱方面(精确率=0.32,召回率=0.47)比现有机构医嘱集(精确率=0.15,召回率=0.46)表现更好。ClinicNet模型预测临床医生对现有机构医嘱集的使用情况(平均精确率=0.31),其平均精确率高于医嘱集使用频率基线(平均精确率=0.20)或逻辑回归模型(平均精确率=0.12)。
与现有的静态医嘱集模板相比,机器学习方法能够以更高的准确性和更少的人工工作量预测临床决策模式。这可以简化现有的临床工作流程,但如果历史临床医嘱实践不正确则可能不适用。因此,诸如医嘱集模板等人工编写的内容对于有目的的护理路径设计仍然很有价值。ClinicNet预测此类个性化医嘱集模板的能力说明了结合自上而下和自下而上方法来提供临床决策支持内容的潜力。
ClinicNet展示了将机器学习方法应用于EHR以预测个体临床医嘱和现有医嘱集模板的能力,这有可能改进当前临床医嘱录入的实践标准。