Suppr超能文献

Y4网络:一种用于一次性双波长数字全息重建的深度学习解决方案。

Y4-Net: a deep learning solution to one-shot dual-wavelength digital holographic reconstruction.

作者信息

Wang Kaiqiang, Kemao Qian, Di Jianglei, Zhao Jianlin

出版信息

Opt Lett. 2020 Aug 1;45(15):4220-4223. doi: 10.1364/OL.395445.

Abstract

In this Letter, a deep learning solution (Y4-Net, four output channels network) to one-shot dual-wavelength digital holography is proposed to simultaneously reconstruct the complex amplitude information of both wavelengths from a single digital hologram with high efficiency. In the meantime, by using single-wavelength results as network ground truth to train the Y4-Net, the challenging spectral overlapping problem in common-path situations is solved with high accuracy.

摘要

在本信函中,提出了一种用于单次双波长数字全息术的深度学习解决方案(Y4-Net,四输出通道网络),以从单个数字全息图高效地同时重建两个波长的复振幅信息。同时,通过将单波长结果用作网络的真实数据来训练Y4-Net,高精度地解决了共光路情况下具有挑战性的光谱重叠问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验