Haputhanthri Udith, Herath Kithmini, Hettiarachchi Ramith, Kariyawasam Hasindu, Ahmad Azeem, Ahluwalia Balpreet S, Acharya Ganesh, Edussooriya Chamira U S, Wadduwage Dushan N
Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.
Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka.
Biomed Opt Express. 2024 Feb 22;15(3):1798-1812. doi: 10.1364/BOE.504954. eCollection 2024 Mar 1.
With applications ranging from metabolomics to histopathology, quantitative phase microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of QPM is currently limited by the pixel-rate of the image sensors. Complementarily, to improve throughput further, here we propose to acquire images in a compressed form so that more information can be transferred beyond the existing hardware bottleneck of the image sensor. To this end, we present a numerical simulation of a learnable optical compression-decompression framework that learns content-specific features. The proposed differentiable quantitative phase microscopy (∂-QPM) first uses learnable optical processors as image compressors. The intensity representations produced by these optical processors are then captured by the imaging sensor. Finally, a reconstruction network running on a computer decompresses the QPM images post aquisition. In numerical experiments, the proposed system achieves compression of × 64 while maintaining the SSIM of ∼0.90 and PSNR of ∼30 dB on cells. The results demonstrated by our experiments open up a new pathway to QPM systems that may provide unprecedented throughput improvements.
定量相显微镜(QPM)的应用范围涵盖从代谢组学到组织病理学,是一种强大的无标记成像方式。尽管在快速多路复用成像传感器和基于深度学习的反解算器方面取得了重大进展,但QPM的通量目前仍受图像传感器像素速率的限制。作为补充,为了进一步提高通量,我们在此建议以压缩形式获取图像,以便能够在图像传感器现有的硬件瓶颈之外传输更多信息。为此,我们提出了一种可学习的光学压缩 - 解压缩框架的数值模拟,该框架可学习特定于内容的特征。所提出的可微定量相显微镜(∂ - QPM)首先使用可学习的光学处理器作为图像压缩器。然后,由这些光学处理器产生的强度表示由成像传感器捕获。最后,在计算机上运行的重建网络在采集后对QPM图像进行解压缩。在数值实验中,所提出的系统实现了64倍的压缩,同时在细胞上保持约0.90的结构相似性指数(SSIM)和约30 dB的峰值信噪比(PSNR)。我们实验所展示的结果为QPM系统开辟了一条新途径,该系统可能提供前所未有的通量提升。