Physics Department and Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
School of Optometry, University of California, Berkeley, Berkeley, CA, USA.
J Vis. 2020 Jul 1;20(7):34. doi: 10.1167/jov.20.7.34.
A mathematical model and a possible neural mechanism are proposed to account for how fixational drift motion in the retina confers a benefit for the discrimination of high-acuity targets. We show that by simultaneously estimating object shape and eye motion, neurons in visual cortex can compute a higher quality representation of an object by averaging out non-uniformities in the retinal sampling lattice. The model proposes that this is accomplished by two separate populations of cortical neurons - one providing a representation of object shape and another representing eye position or motion - which are coupled through specific multiplicative connections. Combined with recent experimental findings, our model suggests that the visual system may utilize principles not unlike those used in computational imaging for achieving "super-resolution" via camera motion.
提出了一个数学模型和一种可能的神经机制,用以解释固定漂移运动如何使视网膜有益于高分辨率目标的辨别。我们表明,通过同时估计物体形状和眼睛运动,视觉皮层中的神经元可以通过平均视网膜采样网格中的不均匀性来计算出物体的更高质量表示。该模型提出,这是通过两个单独的皮质神经元群体来完成的 - 一个提供物体形状的表示,另一个表示眼睛位置或运动 - 它们通过特定的乘法连接耦合。结合最近的实验发现,我们的模型表明,视觉系统可能利用类似于计算成像中使用的原理,通过相机运动实现“超分辨率”。