Suppr超能文献

使用高梯度扩散 MRI 独立于纤维方向分布估计轴突直径指数。

Axon diameter index estimation independent of fiber orientation distribution using high-gradient diffusion MRI.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States.

出版信息

Neuroimage. 2020 Nov 15;222:117197. doi: 10.1016/j.neuroimage.2020.117197. Epub 2020 Aug 1.

Abstract

Axon diameter mapping using high-gradient diffusion MRI has generated great interest as a noninvasive tool for studying trends in axonal size in the human brain. One of the main barriers to mapping axon diameter across the whole brain is accounting for complex white matter fiber configurations (e.g., crossings and fanning), which are prevalent throughout the brain. Here, we present a framework for generalizing axon diameter index estimation to the whole brain independent of the underlying fiber orientation distribution using the spherical mean technique (SMT). This approach is shown to significantly benefit from the use of real-valued diffusion data with Gaussian noise, which reduces the systematic bias in the estimated parameters resulting from the elevation of the noise floor when using magnitude data with Rician noise. We demonstrate the feasibility of obtaining whole-brain orientationally invariant estimates of axon diameter index and relative volume fractions in six healthy human volunteers using real-valued diffusion data acquired on a dedicated high-gradient 3-Tesla human MRI scanner with 300 mT/m maximum gradient strength. The trends in axon diameter index are consistent with known variations in axon diameter from histology and demonstrate the potential of this generalized framework for revealing coherent patterns in axonal structure throughout the living human brain. The use of real-valued diffusion data provides a viable solution for eliminating the Rician noise floor and should be considered for all spherical mean approaches to microstructural parameter estimation.

摘要

利用高梯度扩散 MRI 进行轴突直径测绘作为一种研究人类大脑中轴突大小趋势的非侵入性工具,引起了广泛关注。在整个大脑中,普遍存在的白质纤维结构(例如交叉和扇形)使得跨全脑映射轴突直径成为主要障碍之一。在这里,我们提出了一种使用球平均技术(SMT)在不依赖于基础纤维方向分布的情况下对整个大脑进行轴突直径指数估计的方法。结果表明,该方法从具有高斯噪声的实值扩散数据中显著受益,与使用具有瑞利噪声的幅度数据时由于噪声基底升高而导致估计参数存在系统偏差相比,这减少了估计参数的系统偏差。我们使用专门的高梯度 3-Tesla 人类 MRI 扫描仪上采集的实值扩散数据,在 6 名健康志愿者中证明了获得全脑各向同性轴突直径指数和相对体积分数的可行性,该扫描仪的最大梯度强度为 300 mT/m。轴突直径指数的趋势与组织学中已知的轴突直径变化一致,表明该通用框架具有揭示活体人类大脑中轴突结构一致模式的潜力。使用实值扩散数据为消除瑞利噪声基底提供了可行的解决方案,应考虑将其用于所有基于球平均的微观结构参数估计方法。

相似文献

引用本文的文献

本文引用的文献

3
Adaptive phase correction of diffusion-weighted images.扩散加权图像的自适应相位校正。
Neuroimage. 2020 Feb 1;206:116274. doi: 10.1016/j.neuroimage.2019.116274. Epub 2019 Oct 17.
9
On the scaling behavior of water diffusion in human brain white matter.人类大脑白质中水扩散的标度行为。
Neuroimage. 2019 Jan 15;185:379-387. doi: 10.1016/j.neuroimage.2018.09.075. Epub 2018 Oct 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验