IEEE Trans Med Imaging. 2020 Nov;39(11):3512-3522. doi: 10.1109/TMI.2020.2998480. Epub 2020 Oct 28.
Image reconstruction in low-count PET is particularly challenging because gammas from natural radioactivity in Lu-based crystals cause high random fractions that lower the measurement signal-to-noise-ratio (SNR). In model-based image reconstruction (MBIR), using more iterations of an unregularized method may increase the noise, so incorporating regularization into the image reconstruction is desirable to control the noise. New regularization methods based on learned convolutional operators are emerging in MBIR. We modify the architecture of an iterative neural network, BCD-Net, for PET MBIR, and demonstrate the efficacy of the trained BCD-Net using XCAT phantom data that simulates the low true coincidence count-rates with high random fractions typical for Y-90 PET patient imaging after Y-90 microsphere radioembolization. Numerical results show that the proposed BCD-Net significantly improves CNR and RMSE of the reconstructed images compared to MBIR methods using non-trained regularizers, total variation (TV) and non-local means (NLM). Moreover, BCD-Net successfully generalizes to test data that differs from the training data. Improvements were also demonstrated for the clinically relevant phantom measurement data where we used training and testing datasets having very different activity distributions and count-levels.
在低计数 PET 中进行图像重建特别具有挑战性,因为基于 Lu 的晶体中的天然放射性伽马会导致高随机分数,从而降低测量的信噪比 (SNR)。在基于模型的图像重建 (MBIR) 中,使用更多次未正则化方法的迭代可能会增加噪声,因此将正则化纳入图像重建以控制噪声是可取的。基于学习卷积算子的新正则化方法正在 MBIR 中出现。我们修改了迭代神经网络 BCD-Net 的架构,用于 PET MBIR,并使用 XCAT 体模数据演示了经过训练的 BCD-Net 的功效,该数据模拟了 Y-90 微球放射性栓塞后 Y-90 PET 患者成像中典型的高随机分数和低真实符合计数率。数值结果表明,与使用非训练正则化器(总变分 (TV) 和非局部均值 (NLM))的 MBIR 方法相比,所提出的 BCD-Net 显著提高了重建图像的 CNR 和 RMSE。此外,BCD-Net 成功地推广到了与训练数据不同的测试数据。我们还在具有非常不同的活性分布和计数水平的训练和测试数据集的临床相关体模测量数据中证明了改进。