Suppr超能文献

基于迭代神经网络的低计数定量 PET 重建方法的改进。

Improved Low-Count Quantitative PET Reconstruction With an Iterative Neural Network.

出版信息

IEEE Trans Med Imaging. 2020 Nov;39(11):3512-3522. doi: 10.1109/TMI.2020.2998480. Epub 2020 Oct 28.

Abstract

Image reconstruction in low-count PET is particularly challenging because gammas from natural radioactivity in Lu-based crystals cause high random fractions that lower the measurement signal-to-noise-ratio (SNR). In model-based image reconstruction (MBIR), using more iterations of an unregularized method may increase the noise, so incorporating regularization into the image reconstruction is desirable to control the noise. New regularization methods based on learned convolutional operators are emerging in MBIR. We modify the architecture of an iterative neural network, BCD-Net, for PET MBIR, and demonstrate the efficacy of the trained BCD-Net using XCAT phantom data that simulates the low true coincidence count-rates with high random fractions typical for Y-90 PET patient imaging after Y-90 microsphere radioembolization. Numerical results show that the proposed BCD-Net significantly improves CNR and RMSE of the reconstructed images compared to MBIR methods using non-trained regularizers, total variation (TV) and non-local means (NLM). Moreover, BCD-Net successfully generalizes to test data that differs from the training data. Improvements were also demonstrated for the clinically relevant phantom measurement data where we used training and testing datasets having very different activity distributions and count-levels.

摘要

在低计数 PET 中进行图像重建特别具有挑战性,因为基于 Lu 的晶体中的天然放射性伽马会导致高随机分数,从而降低测量的信噪比 (SNR)。在基于模型的图像重建 (MBIR) 中,使用更多次未正则化方法的迭代可能会增加噪声,因此将正则化纳入图像重建以控制噪声是可取的。基于学习卷积算子的新正则化方法正在 MBIR 中出现。我们修改了迭代神经网络 BCD-Net 的架构,用于 PET MBIR,并使用 XCAT 体模数据演示了经过训练的 BCD-Net 的功效,该数据模拟了 Y-90 微球放射性栓塞后 Y-90 PET 患者成像中典型的高随机分数和低真实符合计数率。数值结果表明,与使用非训练正则化器(总变分 (TV) 和非局部均值 (NLM))的 MBIR 方法相比,所提出的 BCD-Net 显著提高了重建图像的 CNR 和 RMSE。此外,BCD-Net 成功地推广到了与训练数据不同的测试数据。我们还在具有非常不同的活性分布和计数水平的训练和测试数据集的临床相关体模测量数据中证明了改进。

相似文献

引用本文的文献

6
Deep learning-based PET image denoising and reconstruction: a review.基于深度学习的 PET 图像去噪与重建:综述
Radiol Phys Technol. 2024 Mar;17(1):24-46. doi: 10.1007/s12194-024-00780-3. Epub 2024 Feb 6.

本文引用的文献

1
Momentum-Net: Fast and Convergent Iterative Neural Network for Inverse Problems.动量网络:用于反问题的快速收敛迭代神经网络。
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4915-4931. doi: 10.1109/TPAMI.2020.3012955. Epub 2023 Mar 10.
2
Convolutional Analysis Operator Learning: Dependence on Training Data.卷积分析算子学习:对训练数据的依赖性。
IEEE Signal Process Lett. 2019 Aug;26(8):1137-1141. doi: 10.1109/lsp.2019.2921446. Epub 2019 Jun 7.
3
Convolutional Analysis Operator Learning: Acceleration and Convergence.卷积分析算子学习:加速与收敛。
IEEE Trans Image Process. 2020;29(1):2108-2122. doi: 10.1109/TIP.2019.2937734. Epub 2019 Sep 2.
5
Iterative PET Image Reconstruction Using Convolutional Neural Network Representation.基于卷积神经网络表示的迭代 PET 图像重建。
IEEE Trans Med Imaging. 2019 Mar;38(3):675-685. doi: 10.1109/TMI.2018.2869871. Epub 2018 Sep 12.
6
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
7
Deep Generative Adversarial Neural Networks for Compressive Sensing MRI.用于压缩感知 MRI 的深度生成对抗神经网络。
IEEE Trans Med Imaging. 2019 Jan;38(1):167-179. doi: 10.1109/TMI.2018.2858752. Epub 2018 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验