Suppr超能文献

基于边界的标签平滑方法校准分割网络。

Calibrating segmentation networks with margin-based label smoothing.

机构信息

LIVIA, ÉTS Montréal, Canada; International Laboratory on Learning Systems (ILLS), McGill - ETS - MILA - CNRS - Université Paris-Saclay - CentraleSupélec, Canada.

LIVIA, ÉTS Montréal, Canada; International Laboratory on Learning Systems (ILLS), McGill - ETS - MILA - CNRS - Université Paris-Saclay - CentraleSupélec, Canada.

出版信息

Med Image Anal. 2023 Jul;87:102826. doi: 10.1016/j.media.2023.102826. Epub 2023 Apr 24.

Abstract

Despite the undeniable progress in visual recognition tasks fueled by deep neural networks, there exists recent evidence showing that these models are poorly calibrated, resulting in over-confident predictions. The standard practices of minimizing the cross-entropy loss during training promote the predicted softmax probabilities to match the one-hot label assignments. Nevertheless, this yields a pre-softmax activation of the correct class that is significantly larger than the remaining activations, which exacerbates the miscalibration problem. Recent observations from the classification literature suggest that loss functions that embed implicit or explicit maximization of the entropy of predictions yield state-of-the-art calibration performances. Despite these findings, the impact of these losses in the relevant task of calibrating medical image segmentation networks remains unexplored. In this work, we provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses. Specifically, these losses could be viewed as approximations of a linear penalty (or a Lagrangian term) imposing equality constraints on logit distances. This points to an important limitation of such underlying equality constraints, whose ensuing gradients constantly push towards a non-informative solution, which might prevent from reaching the best compromise between the discriminative performance and calibration of the model during gradient-based optimization. Following our observations, we propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances. Comprehensive experiments on a variety of public medical image segmentation benchmarks demonstrate that our method sets novel state-of-the-art results on these tasks in terms of network calibration, whereas the discriminative performance is also improved. The code is available at https://github.com/Bala93/MarginLoss.

摘要

尽管深度学习网络在视觉识别任务方面取得了不可否认的进展,但最近有证据表明,这些模型的校准效果较差,导致预测结果过于自信。在训练过程中,最小化交叉熵损失的标准做法促使预测的 softmax 概率与独热标签分配相匹配。然而,这会导致正确类别的预 softmax 激活显著大于其余激活,从而加剧了校准问题。分类文献中的最新观察结果表明,嵌入预测熵的隐含或显式最大化的损失函数可以实现最先进的校准性能。尽管有这些发现,但这些损失在医学图像分割网络的相关任务中的校准效果仍有待探索。在这项工作中,我们提供了一个统一的约束优化视角,来看待当前最先进的校准损失。具体来说,这些损失可以看作是对逻辑距离施加等式约束的线性惩罚(或拉格朗日项)的近似。这指出了这种底层等式约束的一个重要局限性,其后续梯度不断推向无信息的解决方案,这可能会阻止在基于梯度的优化过程中在模型的判别性能和校准之间达到最佳折衷。基于我们的观察,我们提出了一种简单而灵活的基于不等式约束的推广,它对逻辑距离施加可控的边界。在各种公共医学图像分割基准上的广泛实验表明,我们的方法在这些任务的网络校准方面取得了新的最先进的结果,而判别性能也得到了提高。代码可在 https://github.com/Bala93/MarginLoss 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验