Suppr超能文献

无导航螺旋 SToRM 自由呼吸门控动态 MRI

Free-Breathing and Ungated Dynamic MRI Using Navigator-Less Spiral SToRM.

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):3933-3943. doi: 10.1109/TMI.2020.3008329. Epub 2020 Nov 30.

Abstract

We introduce a kernel low-rank algorithm to recover free-breathing and ungated dynamic MRI from spiral acquisitions without explicit k-space navigators. It is often challenging for low-rank methods to recover free-breathing and ungated images from undersampled measurements; extensive cardiac and respiratory motion often results in the Casorati matrix not being sufficiently low-rank. Therefore, we exploit the non-linear structure of the dynamic data, which gives the low-rank kernel matrix. Unlike prior work that rely on navigators to estimate the manifold structure, we propose a kernel low-rank matrix completion method to directly fill in the missing k-space data from variable density spiral acquisitions. We validate the proposed scheme using simulated data and in-vivo data. Our results show that the proposed scheme provides improved reconstructions compared to the classical methods such as low-rank and XD-GRASP. The comparison with breath-held cine data shows that the quantitative metrics agree, whereas the image quality is marginally lower.

摘要

我们提出了一种内核低秩算法,可从无明确 k 空间导航仪的螺旋采集恢复自由呼吸和无门控动态 MRI。低秩方法通常难以从欠采样测量中恢复自由呼吸和无门控图像;广泛的心脏和呼吸运动通常会导致 Casorati 矩阵不够低秩。因此,我们利用动态数据的非线性结构,得到低秩核矩阵。与依赖导航仪估计流形结构的先前工作不同,我们提出了一种核低秩矩阵补全方法,可直接从变密度螺旋采集填充缺失的 k 空间数据。我们使用模拟数据和体内数据验证了所提出的方案。我们的结果表明,与低秩和 XD-GRASP 等经典方法相比,所提出的方案提供了改进的重建。与屏气电影数据的比较表明,定量指标一致,而图像质量略有降低。

相似文献

1
Free-Breathing and Ungated Dynamic MRI Using Navigator-Less Spiral SToRM.无导航螺旋 SToRM 自由呼吸门控动态 MRI
IEEE Trans Med Imaging. 2020 Dec;39(12):3933-3943. doi: 10.1109/TMI.2020.3008329. Epub 2020 Nov 30.
2
Free-Breathing & Ungated Cardiac MRI Using Iterative SToRM (i-SToRM).自由呼吸和非门控心脏 MRI 使用迭代 SToRM(i-SToRM)。
IEEE Trans Med Imaging. 2019 Oct;38(10):2303-2313. doi: 10.1109/TMI.2019.2908140. Epub 2019 Mar 28.

引用本文的文献

4
Deep learning for accelerated and robust MRI reconstruction.深度学习在加速和稳健 MRI 重建中的应用。
MAGMA. 2024 Jul;37(3):335-368. doi: 10.1007/s10334-024-01173-8. Epub 2024 Jul 23.
9
Dynamic Imaging Using Deep Bi-Linear Unsupervised Representation (DEBLUR).基于深度双线性无监督表示的动态成像(DEBLUR)。
IEEE Trans Med Imaging. 2022 Oct;41(10):2693-2703. doi: 10.1109/TMI.2022.3168559. Epub 2022 Sep 30.

本文引用的文献

2
Bi-Linear Modeling of Data Manifolds for Dynamic-MRI Recovery.基于数据流形的双线性建模在动态 MRI 恢复中的应用。
IEEE Trans Med Imaging. 2020 Mar;39(3):688-702. doi: 10.1109/TMI.2019.2934125. Epub 2019 Aug 9.
4
A Fast Algorithm for Convolutional Structured Low-rank Matrix Recovery.一种用于卷积结构化低秩矩阵恢复的快速算法。
IEEE Trans Comput Imaging. 2017 Dec;3(4):535-550. doi: 10.1109/TCI.2017.2721819. Epub 2017 Jan 30.
9
Dynamic MRI Using SmooThness Regularization on Manifolds (SToRM).基于流形平滑正则化的动态磁共振成像(SToRM)。
IEEE Trans Med Imaging. 2016 Apr;35(4):1106-15. doi: 10.1109/TMI.2015.2509245. Epub 2015 Dec 17.
10
Golden ratio sparse MRI using tiny golden angles.使用微小黄金角的黄金比例稀疏MRI。
Magn Reson Med. 2016 Jun;75(6):2372-8. doi: 10.1002/mrm.25831. Epub 2015 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验