Suppr超能文献

HIV-1 CA 六聚体的固有曲率是衣壳拓扑结构和与亲环素 A 相互作用的基础。

Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A.

机构信息

Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Nat Struct Mol Biol. 2020 Sep;27(9):855-862. doi: 10.1038/s41594-020-0467-8. Epub 2020 Aug 3.

Abstract

The mature retrovirus capsid consists of a variably curved lattice of capsid protein (CA) hexamers and pentamers. High-resolution structures of the curved assembly, or in complex with host factors, have not been available. By devising cryo-EM methodologies for exceedingly flexible and pleomorphic assemblies, we have determined cryo-EM structures of apo-CA hexamers and in complex with cyclophilin A (CypA) at near-atomic resolutions. The CA hexamers are intrinsically curved, flexible and asymmetric, revealing the capsomere and not the previously touted dimer or trimer interfaces as the key contributor to capsid curvature. CypA recognizes specific geometries of the curved lattice, simultaneously interacting with three CA protomers from adjacent hexamers via two noncanonical interfaces, thus stabilizing the capsid. By determining multiple structures from various helical symmetries, we further revealed the essential plasticity of the CA molecule, which allows formation of continuously curved conical capsids and the mechanism of capsid pattern sensing by CypA.

摘要

成熟的逆转录病毒衣壳由结构可变的衣壳蛋白 (CA) 六聚体和五聚体组成的弯曲晶格构成。弯曲组装体或与宿主因子形成复合物的高分辨率结构尚不可用。通过设计用于非常灵活和多形性组装的 cryo-EM 方法,我们已经确定了 apo-CA 六聚体的 cryo-EM 结构,并在近原子分辨率下与亲环素 A (CypA) 形成复合物。CA 六聚体本质上是弯曲的、灵活的和不对称的,揭示了衣壳粒而不是以前吹捧的二聚体或三聚体界面是衣壳曲率的关键贡献者。CypA 识别弯曲晶格的特定几何形状,通过两个非典型界面同时与来自相邻六聚体的三个 CA 原聚体相互作用,从而稳定衣壳。通过从各种螺旋对称确定多个结构,我们进一步揭示了 CA 分子的基本可塑性,这允许形成连续弯曲的锥形衣壳,以及 CypA 对衣壳模式感应的机制。

相似文献

1
Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A.
Nat Struct Mol Biol. 2020 Sep;27(9):855-862. doi: 10.1038/s41594-020-0467-8. Epub 2020 Aug 3.
2
The structure and flexibility of conical HIV-1 capsids determined within intact virions.
Science. 2016 Dec 16;354(6318):1434-1437. doi: 10.1126/science.aah4972.
4
Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics.
Nature. 2013 May 30;497(7451):643-6. doi: 10.1038/nature12162.
5
Functional analysis of the secondary HIV-1 capsid binding site in the host protein cyclophilin A.
Retrovirology. 2019 Apr 4;16(1):10. doi: 10.1186/s12977-019-0471-4.
6
Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR.
Nat Struct Mol Biol. 2020 Sep;27(9):863-869. doi: 10.1038/s41594-020-0489-2. Epub 2020 Sep 8.
7
Visualization of a missing link in retrovirus capsid assembly.
Nature. 2009 Feb 5;457(7230):694-8. doi: 10.1038/nature07724.
8
X-ray structures of the hexameric building block of the HIV capsid.
Cell. 2009 Jun 26;137(7):1282-92. doi: 10.1016/j.cell.2009.04.063. Epub 2009 Jun 11.
9
Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site.
Nat Commun. 2016 Mar 4;7:10714. doi: 10.1038/ncomms10714.

引用本文的文献

1
Structural basis for HIV-1 capsid adaption to a deficiency in IP6 packaging.
Nat Commun. 2025 Sep 1;16(1):8152. doi: 10.1038/s41467-025-63363-9.
4
In-cell chromatin structure by Cryo-FIB and Cryo-ET.
Curr Opin Struct Biol. 2025 Jun;92:103060. doi: 10.1016/j.sbi.2025.103060. Epub 2025 May 10.
5
Kinetic implications of IP anion binding on the molecular switch of HIV-1 capsid assembly.
Sci Adv. 2025 Apr 18;11(16):eadt7818. doi: 10.1126/sciadv.adt7818. Epub 2025 Apr 16.
7
Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single-particle cryo-EM.
Cell Rep. 2025 Feb 25;44(2):115245. doi: 10.1016/j.celrep.2025.115245. Epub 2025 Jan 25.
8
Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1.
Int J Mol Sci. 2025 Jan 9;26(2):495. doi: 10.3390/ijms26020495.
9
HIV capsids: orchestrators of innate immune evasion, pathogenesis and pandemicity.
J Gen Virol. 2025 Jan;106(1). doi: 10.1099/jgv.0.002057.

本文引用的文献

1
Cyclophilin A Prevents HIV-1 Restriction in Lymphocytes by Blocking Human TRIM5α Binding to the Viral Core.
Cell Rep. 2020 Mar 17;30(11):3766-3777.e6. doi: 10.1016/j.celrep.2020.02.100.
2
Hierarchical assembly governs TRIM5α recognition of HIV-1 and retroviral capsids.
Sci Adv. 2019 Nov 27;5(11):eaaw3631. doi: 10.1126/sciadv.aaw3631. eCollection 2019 Nov.
3
Cyclophilin A protects HIV-1 from restriction by human TRIM5α.
Nat Microbiol. 2019 Dec;4(12):2044-2051. doi: 10.1038/s41564-019-0592-5. Epub 2019 Oct 21.
4
A highly potent long-acting small-molecule HIV-1 capsid inhibitor with efficacy in a humanized mouse model.
Nat Med. 2019 Sep;25(9):1377-1384. doi: 10.1038/s41591-019-0560-x. Epub 2019 Sep 9.
5
MxB Restricts HIV-1 by Targeting the Tri-hexamer Interface of the Viral Capsid.
Structure. 2019 Aug 6;27(8):1234-1245.e5. doi: 10.1016/j.str.2019.04.015. Epub 2019 May 30.
6
Software tools for automated transmission electron microscopy.
Nat Methods. 2019 Jun;16(6):471-477. doi: 10.1038/s41592-019-0396-9. Epub 2019 May 13.
8
PF74 Reinforces the HIV-1 Capsid To Impair Reverse Transcription-Induced Uncoating.
J Virol. 2018 Sep 26;92(20). doi: 10.1128/JVI.00845-18. Print 2018 Oct 15.
9
Inositol phosphates are assembly co-factors for HIV-1.
Nature. 2018 Aug;560(7719):509-512. doi: 10.1038/s41586-018-0396-4. Epub 2018 Aug 1.
10
The Human Immunodeficiency Virus Capsid Is More Than Just a Genome Package.
Annu Rev Virol. 2018 Sep 29;5(1):209-225. doi: 10.1146/annurev-virology-092917-043430. Epub 2018 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验