Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA.
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.
Proc Biol Sci. 2020 Aug 12;287(1932):20201065. doi: 10.1098/rspb.2020.1065. Epub 2020 Aug 5.
Temperature is widely known to influence the spatio-temporal dynamics of vector-borne disease transmission, particularly as temperatures vary across critical thermal thresholds. When temperature conditions exhibit such 'transcritical variation', abrupt spatial or temporal discontinuities may result, generating sharp geographical or seasonal boundaries in transmission. Here, we develop a spatio-temporal machine learning algorithm to examine the implications of transcritical variation for West Nile virus (WNV) transmission in the Los Angeles metropolitan area (LA). Analysing a large vector and WNV surveillance dataset spanning 2006-2016, we found that mean temperatures in the previous month strongly predicted the probability of WNV presence in pools of mosquitoes, forming distinctive inhibitory (10.0-21.0°C) and favourable (22.7-30.2°C) mean temperature ranges that bound a narrow 1.7°C transitional zone (21-22.7°C). Temperatures during the most intense months of WNV transmission (August/September) were more strongly associated with infection probability in pools in coastal LA, where temperature variation more frequently traversed the narrow transitional temperature range compared to warmer inland locations. This contributed to a pronounced expansion in the geographical distribution of human cases near the coast during warmer-than-average periods. Our findings suggest that transcritical variation may influence the sensitivity of transmission to climate warming, and that especially vulnerable locations may occur where present climatic fluctuations traverse critical temperature thresholds.
温度广泛影响着病媒传播疾病的时空动态,特别是在关键温度阈值范围内变化时。当温度条件表现出这种“越界变化”时,可能会导致突然的空间或时间不连续,从而在传播过程中产生明显的地理或季节性边界。在这里,我们开发了一种时空机器学习算法,以研究越界变化对洛杉矶大都市区(LA)西尼罗河病毒(WNV)传播的影响。通过分析 2006 年至 2016 年跨度的大型媒介和 WNV 监测数据集,我们发现前一个月的平均温度强烈预测了蚊子池中的 WNV 存在的概率,形成了独特的抑制性(10.0-21.0°C)和有利性(22.7-30.2°C)平均温度范围,界限分明的狭窄 1.7°C 过渡区(21-22.7°C)。在 WNV 传播最激烈的 8 月/9 月,沿海 LA 蚊子池中的感染概率与温度的相关性更强,与内陆较温暖的地区相比,那里的温度变化更频繁地跨越狭窄的过渡温度范围。这导致在温暖时期,沿海地区的人类病例的地理分布明显扩大。我们的研究结果表明,越界变化可能会影响传播对气候变暖的敏感性,并且在当前气候波动跨越临界温度阈值的地方,可能会出现特别脆弱的位置。