Suppr超能文献

一种用于对 COVID-19 随时间传播进行建模的新型蒙特卡罗模拟程序。

A novel Monte Carlo simulation procedure for modelling COVID-19 spread over time.

机构信息

Research Office, Charles Sturt University, Wagga Wagga, NSW, Australia.

出版信息

Sci Rep. 2020 Aug 4;10(1):13120. doi: 10.1038/s41598-020-70091-1.

Abstract

The coronavirus disease 2019 (COVID-19) has now spread throughout most countries in the world causing heavy life losses and damaging social-economic impacts. Following a stochastic point process modelling approach, a Monte Carlo simulation model was developed to represent the COVID-19 spread dynamics. First, we examined various expected performances (theoretical properties) of the simulation model assuming a number of arbitrarily defined scenarios. Simulation studies were then performed on the real COVID-19 data reported (over the period of 1 March to 1 May) for Australia and United Kingdom (UK). Given the initial number of COVID-19 infection active cases were around 10 for both countries, the model estimated that the number of active cases would peak around 29 March in Australia (≈ 1,700 cases) and around 22 April in UK (≈ 22,860 cases); ultimately the total confirmed cases could sum to 6,790 for Australia in about 75 days and 206,480 for UK in about 105 days. The results of the estimated COVID-19 reproduction numbers were consistent with what was reported in the literature. This simulation model was considered an effective and adaptable decision making/what-if analysis tool in battling COVID-19 in the immediate need, and for modelling any other infectious diseases in the future.

摘要

2019 年冠状病毒病(COVID-19)现已在世界上大多数国家传播,造成严重的生命损失和社会经济损害。本研究采用随机点过程建模方法,开发了一个蒙特卡罗模拟模型来代表 COVID-19 的传播动态。首先,我们在假设若干任意定义场景的情况下,检查了模拟模型的各种预期性能(理论性质)。然后对澳大利亚和英国(UK)报告的(3 月 1 日至 5 月 1 日期间)的实际 COVID-19 数据进行了模拟研究。鉴于两国最初的 COVID-19 感染活跃病例数约为 10 例,该模型估计澳大利亚的活跃病例数将在 3 月 29 日左右达到峰值(约 1700 例),英国的活跃病例数将在 4 月 22 日左右达到峰值(约 22860 例);最终,澳大利亚的确诊病例总数可能在大约 75 天内达到 6790 例,英国的确诊病例总数可能在大约 105 天内达到 206480 例。估计的 COVID-19 繁殖数的结果与文献中的报告一致。该模拟模型被认为是应对 COVID-19 即时需求和未来任何其他传染病建模的有效和适应性决策/假设分析工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1e5/7403316/de59235fe1a0/41598_2020_70091_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验