Suppr超能文献

基于真实地理和人口数据的 COVID-19 建模。

COVID-19 modeling based on real geographic and population data.

机构信息

TEBIP High Performers Program, Council of Higher Education, İstanbul University, İstanbul, Turkey.

Faculty of Engineering and Natural Sciences, Kadir Has University, İstanbul, Turkey; TÜBİTAK Research Institute for Fundamental Sciences, Kocaeli, Turkey; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

Turk J Med Sci. 2023 Feb;53(1):333-339. doi: 10.55730/1300-0144.5589. Epub 2023 Feb 22.

Abstract

BACKGROUND

: Intercity travel is one of the most important parameters for combating a pandemic. The ongoing COVID-19 pandemic has resulted in different computational studies involving intercity connections. In this study, the effects of intercity connections during an epidemic such as COVID-19 are evaluated using a new network model.

METHODS

This model considers the actual geographic neighborhood and population density data. This new model is applied to actual Turkish data by means of provincial connections and populations. A Monte Carlo algorithm with a hybrid lattice model is applied to a lattice with 8802 data points.

RESULTS

Around Monte Carlo step 70, the number of active cases in Türkiye reaches up to 8.0% of the total population, which is followed by a second wave at around Monte Carlo step 100. The number of active cases vanishes around Monte Carlo step 160. Starting with İstanbul, the epidemic quickly expands between steps 60 and 100. Simulation results fit the actual mortality data in Türkiye.

DISCUSSION

This model is quantitatively very efficient in modeling real-world COVID-19 epidemic data based on populations and geographical intercity connections, by means of estimating the number of deaths, disease spread, and epidemic termination.

摘要

背景

城市间旅行是抗击大流行的最重要参数之一。正在进行的 COVID-19 大流行导致了涉及城市间联系的不同计算研究。在这项研究中,使用新的网络模型评估了像 COVID-19 这样的传染病期间城市间联系的影响。

方法

该模型考虑了实际的地理邻域和人口密度数据。通过省级联系和人口,将该新模型应用于实际的土耳其数据。通过蒙特卡罗算法和混合晶格模型,将其应用于一个具有 8802 个数据点的晶格。

结果

在蒙特卡罗步骤约 70 时,土耳其的活跃病例数达到总人口的 8.0%,随后在蒙特卡罗步骤约 100 时出现第二次浪潮。在蒙特卡罗步骤约 160 时,活跃病例数消失。从伊斯坦布尔开始,传染病在 60 到 100 步之间迅速蔓延。模拟结果与土耳其的实际死亡率数据相吻合。

讨论

该模型通过估计死亡人数、疾病传播和流行病结束,根据人口和地理城市间联系,在对真实世界 COVID-19 传染病数据进行建模方面具有很高的定量效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f14/10387910/e8cc1fcc0a0c/turkjmedsci-53-1-333f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验