Department of Chemistry, University of Manchester, Manchester, UK.
Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.
Nature. 2020 Aug;584(7819):75-81. doi: 10.1038/s41586-020-2539-7. Epub 2020 Aug 5.
Chemical reactions that reliably join two molecular fragments together (cross-couplings) are essential to the discovery and manufacture of pharmaceuticals and agrochemicals. The introduction of amines onto functionalized aromatics at specific and pre-determined positions (ortho versus meta versus para) is currently achievable only in transition-metal-catalysed processes and requires halogen- or boron-containing substrates. The introduction of these groups around the aromatic unit is dictated by the intrinsic reactivity profile of the method (electrophilic halogenation or C-H borylation) so selective targeting of all positions is often not possible. Here we report a non-canonical cross-coupling approach for the construction of anilines, exploiting saturated cyclohexanones as aryl electrophile surrogates. Condensation between amines and carbonyls, a process that frequently occurs in nature and is often used by (bio-)organic chemists, enables a predetermined and site-selective carbon-nitrogen (C-N) bond formation, while a photoredox- and cobalt-based catalytic system progressively desaturates the cyclohexene ring en route to the aniline. Given that functionalized cyclohexanones are readily accessible with complete regiocontrol using the well established carbonyl reactivity, this approach bypasses some of the frequent selectivity issues of aromatic chemistry. We demonstrate the utility of this C-N coupling protocol by preparing commercial medicines and by the late-stage amination-aromatization of natural products, steroids and terpene feedstocks.
可靠地将两个分子片段连接在一起的化学反应(交叉偶联)对于发现和制造药物和农用化学品至关重要。目前,只有在过渡金属催化过程中才能将胺引入功能化芳烃的特定和预定位置(邻位、间位和对位),并且需要含卤素或硼的底物。这些基团在芳香单元周围的引入取决于该方法的固有反应性谱(亲电卤化或 C-H 硼化),因此通常不可能对所有位置进行选择性靶向。在这里,我们报告了一种非典型的交叉偶联方法,用于构建苯胺,利用饱和环己酮作为芳基亲电子取代基。胺和羰基之间的缩合反应是一种在自然界中经常发生的过程,并且经常被(生物)有机化学家使用,它能够实现预定的和位置选择性的碳-氮(C-N)键形成,而光还原和钴基催化体系则在逐渐使环己烯环不饱和,从而形成苯胺。由于使用成熟的羰基反应性可以完全区域控制得到功能化的环己酮,因此该方法绕过了一些芳香族化学中常见的选择性问题。我们通过制备商业药物以及通过天然产物、甾体和萜烯原料的后期胺化-芳构化来证明这种 C-N 偶联方案的实用性。