Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia.
Phys Chem Chem Phys. 2020 Aug 28;22(32):18114-18123. doi: 10.1039/d0cp02638g. Epub 2020 Aug 6.
Quantum mechanics/molecular mechanics (QM/MM) models are a widely used tool to obtain detailed insight into the properties and functioning of proteins. The outcome of QM/MM studies heavily depends on the quality of the applied QM/MM model. Prediction and right placement of internal water molecules in protein cavities is one of the critical parts of any QM/MM model construction. Herein, we performed a systematic study of four protein hydration algorithms. We tested these algorithms for their ability to predict X-ray-resolved water molecules for a set of membrane photosensitive rhodopsin proteins, as well as the influence of the applied water placement algorithms on the QM/MM calculated absorption maxima (λ) of these proteins. We used 49 rhodopsins and their intermediates with available X-ray structures as the test set. We found that a proper choice of hydration algorithms and setups is needed to predict functionally important water molecules in the chromophore-binding cavity of rhodopsins, such as the water cluster in the N-H region of bacteriorhodopsin or two water molecules in the binding pocket of bovine visual rhodopsin. The QM/MM calculated λ of rhodopsins is also quite sensitive to the applied protein hydration protocols. The best methodology allows obtaining an 18.0 nm average value for the absolute deviation of the calculated λ from the experimental λ. Although the major effect of water molecules on λ originates from the water molecules located in the binding pocket, the water molecules outside the binding pocket also affect the calculated λ mainly by causing a reorganization of the protein structure. The results reported in this study can be used for the evaluation and further development of hydration methodologies, in general, and rhodopsin QM/MM models, in particular.
量子力学/分子力学(QM/MM)模型是一种广泛使用的工具,可用于深入了解蛋白质的性质和功能。QM/MM 研究的结果在很大程度上取决于所应用的 QM/MM 模型的质量。预测和正确放置蛋白质腔体内的内部分子是任何 QM/MM 模型构建的关键部分之一。在此,我们对四种蛋白质水合算法进行了系统研究。我们测试了这些算法预测一组膜光敏视紫红质蛋白的 X 射线分辨水分子的能力,以及应用的水放置算法对这些蛋白质的 QM/MM 计算吸收最大值(λ)的影响。我们使用了 49 种视紫红质及其具有可用 X 射线结构的中间体作为测试集。我们发现,需要选择适当的水合算法和设置来预测视紫红质发色团结合腔中功能重要的水分子,例如菌紫质 N-H 区域的水分子簇或牛视觉视紫红质结合口袋中的两个水分子。QM/MM 计算的视紫红质的 λ 也对所应用的蛋白质水合方案非常敏感。最佳方法可获得计算的 λ 与实验 λ 之间的绝对偏差的 18.0nm 的平均值。尽管水分子对 λ 的主要影响源于位于结合口袋中的水分子,但结合口袋外的水分子也主要通过引起蛋白质结构的重排来影响计算的 λ。本研究报告的结果可用于评价和进一步开发水合方法学,一般而言,以及视紫红质 QM/MM 模型,特别是。