Suppr超能文献

预测前列腺癌的新药物适应证:计算蛋白质化学计量网络药理学平台与患者来源的原代前列腺细胞的整合。

Predicting new drug indications for prostate cancer: The integration of an in silico proteochemometric network pharmacology platform with patient-derived primary prostate cells.

机构信息

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC.

Ministry of Public Health, Doha, Qatar.

出版信息

Prostate. 2020 Oct;80(14):1233-1243. doi: 10.1002/pros.24050. Epub 2020 Aug 6.

Abstract

BACKGROUND

Drug repurposing enables the discovery of potential cancer treatments using publically available data from over 4000 published Food and Drug Administration approved and experimental drugs. However, the ability to effectively evaluate the drug's efficacy remains a challenge. Impediments to broad applicability include inaccuracies in many of the computational drug-target algorithms and a lack of clinically relevant biologic modeling systems to validate the computational data for subsequent translation.

METHODS

We have integrated our computational proteochemometric systems network pharmacology platform, DrugGenEx-Net, with primary, continuous cultures of conditionally reprogrammed (CR) normal and prostate cancer (PCa) cells derived from treatment-naive patients with primary PCa.

RESULTS

Using the transcriptomic data from two matched pairs of benign and tumor-derived CR cells, we constructed drug networks to describe the biological perturbation associated with each prostate cell subtype at multiple levels of biological action. We prioritized the drugs by analyzing these networks for statistical coincidence with the drug action networks originating from known and predicted drug-protein targets. Prioritized drugs shared between the two patients' PCa cells included carfilzomib (CFZ), bortezomib (BTZ), sulforaphane, and phenethyl isothiocyanate. The effects of these compounds were then tested in the CR cells, in vitro. We observed that the IC values of the normal PCa CR cells for CFZ and BTZ were higher than their matched tumor CR cells. Transcriptomic analysis of CFZ-treated CR cells revealed that genes involved in cell proliferation, proteases, and downstream targets of serine proteases were inhibited while KLK7 and KLK8 were induced in the tumor-derived CR cells.

CONCLUSIONS

Given that the drugs in the database are extremely well-characterized and that the patient-derived cells are easily scalable for high throughput drug screening, this combined in vitro and in silico approach may significantly advance personalized PCa treatment and for other cancer applications.

摘要

背景

药物再利用使我们能够利用 4000 多种已发表的美国食品和药物管理局批准的和实验性药物的公开数据来发现潜在的癌症治疗方法。然而,有效评估药物疗效的能力仍然是一个挑战。广泛应用的障碍包括许多计算药物靶点算法的不准确性,以及缺乏临床相关的生物建模系统来验证计算数据,以进行后续转化。

方法

我们已经将我们的计算蛋白质组学系统网络药理学平台 DrugGenEx-Net 与来自未经治疗的原发性前列腺癌患者的条件重编程(CR)正常和前列腺癌细胞的原发性、连续培养物集成在一起。

结果

使用来自两对良性和肿瘤衍生的 CR 细胞的转录组数据,我们构建了药物网络,以描述与每个前列腺细胞亚型在多个生物学作用水平相关的生物学扰动。我们通过分析这些网络与源自已知和预测的药物-蛋白质靶点的药物作用网络的统计一致性,对药物进行了优先级排序。来自两个患者的前列腺癌细胞中共享的优先药物包括卡非佐米(CFZ)、硼替佐米(BTZ)、萝卜硫素和苯乙基异硫氰酸酯。然后在体外的 CR 细胞中测试了这些化合物的效果。我们观察到 CFZ 和 BTZ 对正常前列腺癌 CR 细胞的 IC 值高于其匹配的肿瘤 CR 细胞。CFZ 处理的 CR 细胞的转录组分析显示,参与细胞增殖、蛋白酶和丝氨酸蛋白酶下游靶点的基因受到抑制,而肿瘤衍生的 CR 细胞中 KLK7 和 KLK8 被诱导。

结论

鉴于数据库中的药物具有极好的特征,并且患者来源的细胞易于进行高通量药物筛选,这种体外和计算机结合的方法可能会显著推进前列腺癌个体化治疗以及其他癌症的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验