Suppr超能文献

TSF-MDD:一种基于深度学习的方法,用于通过时空频率特征融合对重度抑郁症进行脑电图诊断。

TSF-MDD: A Deep Learning Approach for Electroencephalography-Based Diagnosis of Major Depressive Disorder with Temporal-Spatial-Frequency Feature Fusion.

作者信息

Gan Wei, Zhao Ruochen, Ma Yujie, Ning Xiaolin

机构信息

School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, China.

出版信息

Bioengineering (Basel). 2025 Jan 21;12(2):95. doi: 10.3390/bioengineering12020095.

Abstract

Major depressive disorder (MDD) is a prevalent mental illness characterized by persistent sadness, loss of interest in activities, and significant functional impairment. It poses severe risks to individuals' physical and psychological well-being. The development of automated diagnostic systems for MDD is essential to improve diagnostic accuracy and efficiency. Electroencephalography (EEG) has been extensively utilized in MDD diagnostic research. However, studies employing deep learning methods still face several challenges, such as difficulty in extracting effective information from EEG signals and risks of data leakage due to experimental designs. These issues result in limited generalization capabilities when models are tested on unseen individuals, thereby restricting their practical application. In this study, we propose a novel deep learning approach, termed TSF-MDD, which integrates temporal, spatial, and frequency-domain information. TSF-MDD first applies a data reconstruction scheme to obtain a four-dimensional temporal-spatial-frequency representation of EEG signals. These data are then processed by a model based on 3D-CNN and CapsNet, enabling comprehensive feature extraction across domains. Finally, a subject-independent data partitioning strategy is employed during training and testing to eliminate data leakage. The proposed approach achieves an accuracy of 92.1%, precision of 90.0%, recall of 94.9%, and F1-score of 92.4%, respectively, on the Mumtaz2016 public dataset. The results demonstrate that TSF-MDD exhibits excellent generalization performance.

摘要

重度抑郁症(MDD)是一种常见的精神疾病,其特征为持续的悲伤、对活动失去兴趣以及严重的功能损害。它对个体的身心健康构成严重风险。开发用于MDD的自动化诊断系统对于提高诊断准确性和效率至关重要。脑电图(EEG)已被广泛应用于MDD诊断研究。然而,采用深度学习方法的研究仍面临若干挑战,例如难以从EEG信号中提取有效信息以及由于实验设计导致的数据泄露风险。这些问题导致模型在对未见过的个体进行测试时泛化能力有限,从而限制了它们的实际应用。在本研究中,我们提出了一种新颖的深度学习方法,称为TSF-MDD,它整合了时域、空域和频域信息。TSF-MDD首先应用一种数据重建方案来获得EEG信号的四维时空频表示。然后,这些数据由基于3D-CNN和CapsNet的模型进行处理,从而实现跨域的综合特征提取。最后,在训练和测试过程中采用独立于受试者的数据划分策略来消除数据泄露。在Mumtaz2016公共数据集上,所提出的方法分别实现了92.1%的准确率、90.0%的精确率、94.9%的召回率和92.4%的F1分数。结果表明TSF-MDD具有出色的泛化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eae/11851794/b72c057e8297/bioengineering-12-00095-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验