Suppr超能文献

Thermomyces dupontii 中开发的两个 CRISPR/Cas9 系统及其在 Thermolide 生物合成和真菌适应中的关键基因功能的表征。

Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation.

机构信息

State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China.

State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People's Republic of China

出版信息

Appl Environ Microbiol. 2020 Oct 1;86(20). doi: 10.1128/AEM.01486-20.

Abstract

, a widely distributed thermophilic fungus, is an ideal organism for investigating the mechanism of thermophilic fungal adaptation to diverse environments. However, genetic analysis of this fungus is hindered by a lack of available and efficient gene-manipulating tools. In this study, two different Cas9 proteins from mesophilic and thermophilic bacteria, with expression of a single guide RNA (sgRNA) under the control of tRNA, were successfully adapted for genome editing in We demonstrated the feasibility of applying these two gene editing systems to edit one or two genes in The mesophilic CRISPR/Cas9 system displayed higher editing efficiency (50 to 86%) than the thermophilic CRISPR/Cas9 system (40 to 67%). However, the thermophilic CRISPR/Cas9 system was much less time-consuming than the mesophilic CRISPR/Cas9 system. Combining the CRISPR/Cas9 systems with homologous recombination, a constitutive promoter was precisely knocked in to activate a silent polyketide synthase-nonribosomal peptide synthase (PKS-NRPS) biosynthetic gene, leading to the production of extra metabolites that did not exist in the parental strains. Metabolic analysis of the generated biosynthetic gene mutants suggested that a key biosynthetic pathway existed for the biosynthesis of thermolides in , with the last two steps being different from those in the heterologous host Further analysis suggested that these biosynthetic genes might be involved in fungal mycelial growth, conidiation, and spore germination, as well as in fungal adaptation to osmotic, oxidative, and cell wall-perturbing agents. represents a unique ecological taxon in fungi, but a lack of flexible genetic tools has greatly hampered the study of gene function in this taxon. The biosynthesis of potent nematicidal thermolides in remains largely unknown. In this study, mesophilic and thermophilic CRISPR/Cas9 gene editing systems were successfully established for both disrupting and activating genes in In this study, a usable thermophilic CRISPR/Cas9 gene editing system derived from bacteria was constructed in thermophilic fungi. Chemical analysis of the mutants generated by these two gene editing systems identified the key biosynthetic genes and pathway for the biosynthesis of nematocidal thermolides in Phenotype analysis and chemical stress experiments revealed potential roles of secondary metabolites or their biosynthetic genes in fungal development and adaption to chemical stress conditions. These two genomic editing systems will not only accelerate investigations into the biosynthetic mechanisms of unique natural products and functions of cryptic genes in but also offer an example for setting up CRISPR/Cas9 systems in other thermophilic fungi.

摘要

,一种广泛分布的嗜热真菌,是研究嗜热真菌适应不同环境的机制的理想生物体。然而,由于缺乏可用的和有效的基因操作工具,该真菌的遗传分析受到阻碍。在这项研究中,两种来自嗜温和嗜热细菌的不同 Cas9 蛋白,在 tRNA 控制下表达单个指导 RNA (sgRNA),成功地适应了 的基因组编辑。我们证明了这两种基因编辑系统可以应用于编辑一个或两个基因。在 中,来自嗜温细菌的 CRISPR/Cas9 系统的编辑效率(50%至 86%)高于来自嗜热细菌的 CRISPR/Cas9 系统(40%至 67%)。然而,嗜热 CRISPR/Cas9 系统比嗜温 CRISPR/Cas9 系统耗时少得多。将 CRISPR/Cas9 系统与同源重组相结合,精确地敲入一个组成型启动子,激活一个沉默的聚酮合酶-非核糖体肽合酶 (PKS-NRPS) 生物合成基因,导致产生在亲本菌株中不存在的额外代谢产物。对生成的生物合成基因突变体的代谢分析表明,在 中存在热肽生物合成的关键生物合成途径,最后两步与异源宿主不同。进一步的分析表明,这些生物合成基因可能参与真菌菌丝生长、分生孢子形成和孢子萌发,以及真菌对渗透、氧化和细胞壁破坏剂的适应。 代表真菌中一个独特的生态分类群,但缺乏灵活的遗传工具极大地阻碍了对该分类群中基因功能的研究。在 中,具有强大杀线虫活性的热肽的生物合成在很大程度上仍然未知。在这项研究中,成功地建立了用于在 中破坏和激活基因的嗜温和嗜热 CRISPR/Cas9 基因编辑系统。通过这两种基因编辑系统生成的突变体的化学分析确定了在 中合成杀线虫热肽的关键生物合成基因和途径。表型分析和化学胁迫实验揭示了次生代谢物或其生物合成基因在真菌发育和适应化学胁迫条件中的潜在作用。这两个基因组编辑系统不仅将加速对独特天然产物生物合成机制和隐藏基因功能的研究,而且为在其他嗜热真菌中建立 CRISPR/Cas9 系统提供了一个范例。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验