Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow, Russia, 125315.
Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, Moscow, Russia, 117418.
Curr Atheroscler Rep. 2020 Aug 9;22(10):54. doi: 10.1007/s11883-020-00873-5.
Mutations in both nuclear and mitochondrial genes are associated with the development of atherosclerotic lesions in arteries and may provide a partial explanation to the focal nature of lesion distribution in the arterial wall. This review is aimed to discuss the genetic aspects of atherogenesis with a special focus on possible pro-atherogenic variants (mutations) of the nuclear and mitochondrial genomes that may be implicated in atherosclerosis development and progression.
Mutations in the nuclear genes generally do not cause a phenotype restricted to a specific vascular wall cell and manifest themselves mostly at the organism level. Such mutations can act as important contributors to changes in lipid metabolism and modulate other risk factors of atherosclerosis. By contrast, mitochondrial DNA (mtDNA) mutations occurring locally in the arterial wall cells or in circulating immune cells may play a site-specific role in atherogenesis. The mosaic distribution of heteroplasmic mtDNA mutations in the arterial wall tissue may explain, at least to some extent, the locality and focality of atherosclerotic lesions distribution. The genetic mechanisms of atherogenesis include alterations of both nuclear and mitochondrial genomes. Altered lipid metabolism and inflammatory response of resident arterial wall and circulating immune cells may be related to mtDNA damage and defective mitophagy, which hinders clearance of dysfunctional mitochondria. Mutations of mtDNA can have mosaic distribution and locally affect functionality of endothelial and subendothelial intimal cells in the arterial wall contributing to atherosclerotic lesion development.
核基因和线粒体基因的突变与动脉粥样硬化病变的发展有关,这可能部分解释了动脉壁中病变分布的局灶性。本文旨在讨论动脉粥样形成的遗传方面,特别关注核基因组和线粒体基因组中可能与动脉粥样硬化发展和进展有关的潜在促动脉粥样硬化变异(突变)。
核基因突变通常不会导致局限于特定血管壁细胞的表型,主要在机体水平上表现出来。这种突变可以作为脂质代谢变化的重要贡献者,并调节动脉粥样硬化的其他危险因素。相比之下,局部发生在动脉壁细胞或循环免疫细胞中的线粒体 DNA(mtDNA)突变可能在动脉粥样形成中发挥特定部位的作用。动脉壁组织中异质 mtDNA 突变的镶嵌分布至少在一定程度上可以解释动脉粥样硬化病变分布的局灶性。动脉粥样形成的遗传机制包括核基因组和线粒体基因组的改变。驻留的动脉壁和循环免疫细胞的脂质代谢和炎症反应的改变可能与 mtDNA 损伤和有缺陷的线粒体自噬有关,这阻碍了功能失调的线粒体的清除。mtDNA 的突变可以有镶嵌分布,并局部影响动脉壁内皮细胞和内膜下细胞的功能,导致动脉粥样硬化病变的发展。