Suppr超能文献

生物光子晶体增强的等离子体介观胶囊:迈向单分子光流体表面增强拉曼光谱传感

Biological Photonic Crystal-Enhanced Plasmonic Mesocapsules: Approaching Single-Molecule Optofluidic-SERS Sensing.

作者信息

Sivashanmugan Kundan, Squire Kenneth, Kraai Joseph A, Tan Ailing, Zhao Yong, Rorrer Gregory L, Wang Alan X

机构信息

School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA.

School of Chemical, Biological, and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA.

出版信息

Adv Opt Mater. 2019 Jul 4;7(13). doi: 10.1002/adom.201900415. Epub 2019 May 2.

Abstract

Surface-enhanced Raman scattering (SERS) sensing in microfluidic devices, namely optofluidic-SERS, suffers an intrinsic trade-off between mass transport and hot spot density, both of which are required for ultra-sensitive detection. To overcome this compromise, photonic crystal-enhanced plasmonic mesocapsules are synthesized, utilizing diatom biosilica decorated with in-situ growth silver nanoparticles (Ag NPs). In our optofluidic-SERS testing, 100× higher enhancement factors and greater than 1,000× better detection limit were achieved compared with traditional colloidal Ag NPs, the improvement of which is attributed to unique properties of the mesocapsules. First, the porous diatom biosilica frustules serve as carrier capsules for high density Ag NPs that form high density plasmonic hot-spots. Second, the submicron-pores embedded in the frustule walls not only create a large surface-to-volume ratio allowing for effective analyte capture, but also enhance the local optical field through the photonic crystal effect. Last, the mesocapsules provide effective mixing with analytes as they are flowing inside the microfluidic channel. The reported mesocapsules achieved single molecule detection of Rhodamine 6G in microfluidic devices and were further utilized to detect 1 nM of benzene and chlorobenzene compounds in tap water with near real-time response, which successfully overcomes the constraint of traditional optofluidic sensing.

摘要

微流控装置中的表面增强拉曼散射(SERS)传感,即光流体SERS,在质量传输和热点密度之间存在内在的权衡,而这两者对于超灵敏检测都是必需的。为了克服这种折衷,利用用原位生长的银纳米颗粒(Ag NPs)装饰的硅藻生物二氧化硅合成了光子晶体增强的等离子体介胶囊。在我们的光流体SERS测试中,与传统的胶体Ag NPs相比,实现了高100倍的增强因子和超过1000倍的更好检测限,其改进归因于介胶囊的独特性质。首先,多孔的硅藻生物二氧化硅壳作为高密度Ag NPs的载体胶囊,形成高密度的等离子体热点。其次,嵌入壳壁的亚微米孔不仅创造了大的表面积与体积比,允许有效地捕获分析物,而且通过光子晶体效应增强了局部光场。最后,介胶囊在微流控通道内流动时与分析物提供有效的混合。所报道的介胶囊在微流控装置中实现了罗丹明6G的单分子检测,并进一步用于检测自来水中1 nM的苯和氯苯化合物,具有近实时响应,成功克服了传统光流体传感的限制。

相似文献

1
Biological Photonic Crystal-Enhanced Plasmonic Mesocapsules: Approaching Single-Molecule Optofluidic-SERS Sensing.
Adv Opt Mater. 2019 Jul 4;7(13). doi: 10.1002/adom.201900415. Epub 2019 May 2.
2
Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica.
Biosens Bioelectron. 2017 Feb 15;88:63-70. doi: 10.1016/j.bios.2016.07.062. Epub 2016 Jul 19.
4
Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles.
IEEE Trans Nanobioscience. 2016 Dec;15(8):828-834. doi: 10.1109/TNB.2016.2636869. Epub 2016 Dec 7.
6
Ultra-sensitive immunoassay biosensors using hybrid plasmonic-biosilica nanostructured materials.
J Biophotonics. 2015 Aug;8(8):659-67. doi: 10.1002/jbio.201400070. Epub 2014 Sep 25.
7
Surface-Enhanced Raman Spectroscopy Sensors From Nanobiosilica With Self-Assembled Plasmonic Nanoparticles.
IEEE J Sel Top Quantum Electron. 2014 May;20(3):6900806. doi: 10.1109/JSTQE.2014.2301016.
9
Limit-Defying μ-Total Analysis System: Achieving Part-Per-Quadrillion Sensitivity on a Hierarchical Optofluidic SERS Sensor.
ACS Omega. 2023 May 1;8(19):17151-17158. doi: 10.1021/acsomega.3c01519. eCollection 2023 May 16.

引用本文的文献

1
Biohybrid Nanosystem Fabricated with Marine Diatom for Uric Acid Detection.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1792-1805. doi: 10.1021/acsbiomaterials.4c02312. Epub 2025 Feb 18.
5
Fiber-Based SERS-Fluidic Polymeric Platforms for Improved Optical Analysis of Liquids.
Bioengineering (Basel). 2023 Jun 1;10(6):676. doi: 10.3390/bioengineering10060676.
6
Limit-Defying μ-Total Analysis System: Achieving Part-Per-Quadrillion Sensitivity on a Hierarchical Optofluidic SERS Sensor.
ACS Omega. 2023 May 1;8(19):17151-17158. doi: 10.1021/acsomega.3c01519. eCollection 2023 May 16.
7
Carboxymethylcellulose reinforced starch films and rapid detection of spoiled beverages.
Front Bioeng Biotechnol. 2023 Jan 6;10:1099118. doi: 10.3389/fbioe.2022.1099118. eCollection 2022.
8
Ion-Modified Starch Film Enables Rapid Detection of Spoiled Fruit Juices.
Int J Mol Sci. 2022 Nov 25;23(23):14732. doi: 10.3390/ijms232314732.
9
Photonic Nano-/Microstructured Diatom Based Biosilica in Metal Modification and Removal-A Review.
Materials (Basel). 2022 Sep 23;15(19):6597. doi: 10.3390/ma15196597.
10
Diatom biosilica in plasmonics: applications in sensing, diagnostics and therapeutics [Invited].
Biomed Opt Express. 2022 Apr 27;13(5):3080-3101. doi: 10.1364/BOE.457483. eCollection 2022 May 1.

本文引用的文献

1
Recent Advances in Tunable and Reconfigurable Metamaterials.
Micromachines (Basel). 2018 Oct 31;9(11):560. doi: 10.3390/mi9110560.
2
Molecular hydrophobicity at a macroscopically hydrophilic surface.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1520-1525. doi: 10.1073/pnas.1819000116. Epub 2019 Jan 17.
3
Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography.
R Soc Open Sci. 2018 Apr 4;5(4):172034. doi: 10.1098/rsos.172034. eCollection 2018 Apr.
4
Surface chemical heterogeneity modulates silica surface hydration.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2890-2895. doi: 10.1073/pnas.1722263115. Epub 2018 Mar 5.
5
Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles.
IEEE Trans Nanobioscience. 2016 Dec;15(8):828-834. doi: 10.1109/TNB.2016.2636869. Epub 2016 Dec 7.
7
Three-Dimensional Clustered Nanostructures for Microfluidic Surface-Enhanced Raman Detection.
ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24974-81. doi: 10.1021/acsami.6b10542. Epub 2016 Sep 13.
8
Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica.
Biosens Bioelectron. 2017 Feb 15;88:63-70. doi: 10.1016/j.bios.2016.07.062. Epub 2016 Jul 19.
9
An optofluidic system with volume measurement and surface plasmon resonance sensor for continuous glucose monitoring.
Biomicrofluidics. 2016 Feb 26;10(1):011913. doi: 10.1063/1.4942946. eCollection 2016 Jan.
10
Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.
Materials (Basel). 2015 Jun;8(6):3024-3052. doi: 10.3390/ma8063024. Epub 2015 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验